斯特芬森加速迭代法(Steffensen)-埃特金方法(Aitken) 一元非线性方程求根 C语言实现

计算方法实验 专栏收录该内容
27 篇文章 1 订阅

斯特芬森加速迭代法(Steffensen)/埃特金方法(Aitken) 一元非线性方程求根 C语言实现

标签:计算方法实验

斯特芬森加速迭代法(Steffensen)/埃特金方法(Aitken)较迭代法的优点:
1.迭代法收敛-->加速收敛
2.迭代法不收敛-->收敛
/*
    方程f(x) = x^3 - 3 * x - 1 = 0有三个实根x1 = 1.8793, x2 = -0.34727, x3 = -1.53209.
    本实验采用下面两种计算格式,求的根x1或x2或x3.
*/
#include <stdio.h>
#include <math.h>

double f1(double x){  //迭代函数f1(x)
    return (3.0 * x + 1) / (x * x);
}

double f2(double x){  //迭代函数f2(x)
    return 1.0 / (x * x - 3);
}

double Steffensen(double x){
    return x -((f1(x) - x) * (f1(x) - x) / (f1(f1(x)) - 2.0 * f1(x) + x));
}

int main(){
    double x1, d;
    double x0 = 0.5;  //迭代初值
    double eps = 0.0001;  //求解精度
    int k = 0;  //迭代次数

    do{
        k++;
        x1 = Steffensen(x0);   ///迭代函数
        printf("%d    %f\n", k, x1);
        d = fabs(x1 - x0);
        x0 = x1;
    }while(d >= eps);
    printf("the root of f(x) = 0 is x = %f, k = %d\n", x1, k);

    return 0;
}

f1(x):
f1
f1(x)Steffensen加速后:
f1s
f2(x):
f2
f2(x)Steffensen加速后:
f2s

  • 3
    点赞
  • 2
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值