bzoj4530/lg4291
需要维护子树个数..
在lct中维护两个值:size[x](x的所有子树个数)、isize[x](与x通过虚边链接的子树个数)
考虑LCT基本操作中哪些需要变
update肯定会变
inline void update(int x){
size[x]=size[ch[x][0]]+size[ch[x][1]]+isz[x]+1; //要加上isz[x],表示连到x的虚树的个数
}
link操作中,把x、y之间建一条虚边,虚树个数也会改变
inline void link(int x,int y){
makeroot(x);makeroot(y); //注意这里要把y也换到跟,不然y上面的信息就不对了
fa[x]=y;isz[y]+=size[x];update(y); //x向上连一条虚边连到y,y的虚树多了x,所以要先处理y的虚树个数,在处理y的所有数个数(update中会用到isz啊...)
}
access是把x通到根,显然会改变虚实关系,也是要改哦
inline void access(int x){
int y=0;
while(x){
splay(x);isz[x]+=size[ch[x][1]]; //要把ch[x][1]变为虚边了~
ch[x][1]=y;isz[x]-=size[y];update(x); //y变为实边了呢~
y=x;x=fa[x];
}
}
cut,已经没有变了…虚边都不是了..update维护就好啦,所以不用变
splay,显然是在实树的时候才会进行的,因此不会变
makeroot,在access时已经变过来啊,那就不变了吧
所以最终,代码如下~
#include <cstdio>
#define N 100010
int n,m,ch[N][2],size[N],isz[N],fa[N],rev[N];
inline bool isroot(int x){return x!=ch[fa[x]][1] && x!=ch[fa[x]][0];}
inline void pushdown(int x){
if(!rev[x]) return;
rev[ch[x][0]]^=1;rev[ch[x][1]]^=1;rev[x]=0;
}
void push(int x){
if(!isroot(x)) push(fa[x]);
pushdown(x);
}
inline void update(int x){size[x]=size[ch[x][0]]+size[ch[x][1]]+isz[x]+1;}
inline void rotate(int x){
int y=fa[x],z=fa[y],t=ch[y][0]==x;
if(!isroot(y)) ch[z][ch[z][1]==y]=x;
fa[y]=x;fa[x]=z;fa[ch[x][t]]=y;
ch[y][t^1]=ch[x][t];ch[x][t]=y;
update(y);update(x);
}
inline void splay(int x){
push(x);
while(!isroot(x)){
int y=fa[x];
if(isroot(y)){rotate(x);return;}
if(ch[y][0]==x^ch[fa[y]][0]==y) rotate(x);
else rotate(y);rotate(x);
}
}
inline void access(int x){
int y=0;
while(x){
splay(x);isz[x]+=size[ch[x][1]];
ch[x][1]=y;isz[x]-=size[y];update(x);
y=x;x=fa[x];
}
}
inline void makeroot(int x){
access(x);splay(x);rev[x]^=1;
}
inline void link(int x,int y){
makeroot(x);
makeroot(y);
fa[x]=y;isz[y]+=size[x];update(y);
}
inline void query(int x,int y){
makeroot(x);access(y);splay(y);
printf("%d\n",size[x]*(size[y]-size[x]));
}
int main(){
scanf("%d%d",&n,&m);
// for(int i=1;i<=n;i++) size[i]=1;
for(int i=1;i<=m;i++){
char op[5];int x,y;scanf("%s%d%d",op,&x,&y);
if(op[0]=='A') link(x,y);
else query(x,y);
}
return 0;
}
本文介绍了一种在LCT树中维护子树个数的方法,通过定义size[x]为节点x的所有子树个数,isz[x]为与x通过虚边连接的子树个数,并详细说明了在基本操作update、link、access中如何更新这些值。
1万+

被折叠的 条评论
为什么被折叠?



