泰勒展开

泰勒展开,本质上就是为了在某个点附近,用多项式函数去近似其他函数

泰勒展开式

f(x)=f(x0)+f(x0)1!(xx0)+f′′(x0)2!(xx0)2+...+f(n)(x0)n!(xx0)n+Rn(x) f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ⋅ ( x − x 0 ) + f ″ ( x 0 ) 2 ! ⋅ ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ⋅ ( x − x 0 ) n + R n ( x )

f(x)=f(x0)+i=1nf(i)(x0)i!(xx0)i+Rn(x) 即 : f ( x ) = f ( x 0 ) + ∑ i = 1 n f ( i ) ( x 0 ) i ! ⋅ ( x − x 0 ) i + R n ( x )

其中 Rn(x) R n ( x ) 表示泰勒公式的余项,可以估算近似的误差,相当于无穷小

将其中的 x0 x 0 带入 0 0 就可以得到麦克劳林展开,即

f(x)=f(0)+f(0)1!x+f(0)2!x2+...+fn(0)n!xn

然后虽然我们知道了这两个公式,还是不会用诶(当然大佬可能都是知道怎么用的..然而我确是一脸懵233)..

下面说两个实例

  1. 展开 y=sin(x) y = sin ⁡ ( x ) y=cos(x) y = cos ⁡ ( x )

    y=sin(x) y = sin ⁡ ( x ) 来说 :

    前置知识: fn(x)=sin(x+nπ2) f n ( x ) = s i n ( x + n π 2 ) (推一下 x=123... x = 1 、 2 、 3... 即可找到公式)

    然后我们需要求出 f(0) f ( 0 ) n n 阶导,推一下发现

    (1)f1(0)=1f2(0)=0f3(0)=1f4(0)=0f5(0)=1f6(0)=0f7(0)=1f8(0)=0

    也就是 f2n1(0)=(1)n1 f 2 n − 1 ( 0 ) = ( − 1 ) n − 1 , f2n(0)=0 f 2 n ( 0 ) = 0

    通过麦克劳林展开可以得到

    sin(x)=x1!x33!+x55!...+(1)n1x2n1(2n1)! s i n ( x ) = x 1 ! − x 3 3 ! + x 5 5 ! − . . . + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) !

    同理可以得到
    cos(x)=1x22!+x44!...+(1)nx2n(2n)! c o s ( x ) = 1 − x 2 2 ! + x 4 4 ! − . . . + ( − 1 ) n x 2 n ( 2 n ) !

  2. 计算近似值
    前置知识: e=limx0(1+x)1x e = lim x → 0 ( 1 + x ) 1 x e=limx(1+1x)x e = lim x → ∞ ( 1 + 1 x ) x

    因此令 f(x)=ex f ( x ) = e x

    通过麦克劳林展开可以得到

    ex=f(x)=e0+e01!x+e02!x2+...+e0n!xn+Rn=1+x1!+x22!+x33!+...+xnn!+Rn e x = f ( x ) = e 0 + e 0 1 ! ⋅ x + e 0 2 ! ⋅ x 2 + . . . + e 0 n ! ⋅ x n + R n = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + . . . + x n n ! + R n

    忽略余项得到 ex1+x1!+x22!+x33!+...+xnn!+Rn e x ≈ 1 + x 1 ! + x 2 2 ! + x 3 3 ! + . . . + x n n ! + R n

    带入 x=1 x = 1 , e1+11!+12!+13!+...+1n! e ≈ 1 + 1 1 ! + 1 2 ! + 1 3 ! + . . . + 1 n !

对于泰勒展开的感性理解 链至知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值