第十六周--大数据集上的排序算法性能体验

/*        
*作    者:孙子策    
*完成日期:2016.12.15
*问题描述:设计一个函数,产生一个至少5万条记录的数据集合。在同一数据集上,用直接插入排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序等算法进行排序,记录所需要的时间,经过对比,得到对复杂度不同的各种算法在运行时间方面的感性认识。 
提示1:这一项目需要整合多种排序算法,可以考虑先建设排序算法库,作为我们这门课算法库的收官之作;  
提示2:本项目旨在获得对于复杂度不同算法的感性认识,由于数据分布特点、计算机运行状态等不同,其结果并不能完全代替对算法复杂度的理论分析;  
提示3:由于C语言标准提供的时间函数只精确到秒,几种O(nlog 2 n) 级别的算法,在5万条记录的压力下,并不能明显地看出优劣,可以忽略直接插入排序、冒泡排序、直接选择排序这三种相对低效率的算法(以节约时间。若能够忍受他们长时间地运行,请自便。),成10倍地加大数据量,然后进行观察。 
*/  

a.h代码:

#ifndef SORT_H_INCLUDED  
#define SORT_H_INCLUDED  
#define MaxSize 50000      //最多的数据,取5万,只测试快速算法,可以往大调整  
//下面的符号常量和结构体针对基数排序  
#define Radix 10           //基数的取值  
#define Digits 10          //关键字位数   
typedef int KeyType;    //定义关键字类型  
typedef char InfoType[10];  
typedef struct          //记录类型  
{  
    KeyType key;        //关键字项  
    InfoType data;      //其他数据项,类型为InfoType  
} RecType;              //排序的记录类型定义  
typedef struct node  
{  
    KeyType data;      //记录的关键字,同算法讲解中有差别  
    struct node *next;  
} RadixRecType;   
void InsertSort(RecType R[],int n); //直接插入排序  
void ShellSort(RecType R[],int n);  //希尔排序算法  
void BubbleSort(RecType R[],int n); //冒泡排序  
void QuickSort(RecType R[],int n);  //快速排序  
void SelectSort(RecType R[],int n);  //直接选择排序  
void HeapSort(RecType R[],int n);  //堆排序  
void MergeSort(RecType R[],int n); //归并排序   
//下面函数支持基数排序  
void CreateLink(RadixRecType *&p,RecType R[],int n);   //创建基数排序用的链表  
void DestoryLink(RadixRecType *&p); //释放基数排序用的链表  
void RadixSort(RadixRecType *&p); //基数排序   
#endif // SORT_H_INCLUDED  

main.cpp代码:

#include <stdio.h>  
#include <malloc.h>  
#include <stdlib.h>  
#include <time.h>  
#include "a.h"  
void GetLargeData(RecType *&R, int n)  
{  
    srand(time(0));  
    R=(RecType*)malloc(sizeof(RecType)*n);  
    for(int i=0; i<n; i++)  
        R[i].key= rand();  //产生0~RAND_MAX间的数  
    printf("生成了%d条记录\n", n);  
}   
//调用某一排序算法完成排序,返回排序用时  
long Sort(RecType *&R, int n, void f(RecType*, int))  
{  
    int i;  
    long beginTime, endTime;  
    RecType *R1=(RecType*)malloc(sizeof(RecType)*n);  
    for (i=0;i<n;i++)  
        R1[i]=R[i];  
    beginTime = time(0);  
    f(R1,n);  
    endTime = time(0);  
    free(R1);  
    return endTime-beginTime;  
}   
//调用基数排序算法完成排序,返回排序用时  
long Sort1(RecType *&R, int n)  
{  
    long beginTime, endTime;  
    RadixRecType *p;  
    CreateLink(p,R,n);  
    beginTime = time(0);  
    RadixSort(p);  
    endTime = time(0);  
    DestoryLink(p);  
    return endTime-beginTime;  
}   
int main()  
{  
    RecType *R;  
    int n = MaxSize;   //测试中, MaxSize取50W  
    GetLargeData(R, n);  
    printf("各种排序花费时间:\n");  
    printf("  直接插入排序:%ld\n", Sort(R, n, InsertSort));  
    printf("  希尔排序:%ld\n", Sort(R, n, ShellSort));  
    printf("  冒泡排序:%ld\n", Sort(R, n, BubbleSort));  
    printf("  快速排序:%ld\n", Sort(R, n, QuickSort));  
    printf("  直接选择排序:%ld\n", Sort(R, n, SelectSort));  
    printf("  堆排序:%ld\n", Sort(R, n, HeapSort));  
    printf("  归并排序:%ld\n", Sort(R, n, MergeSort));  
    printf("  基数排序:%ld\n", Sort1(R, n));  
    free(R);  
    return 0;  
}  
a.cpp代码:

#include "a.h"  
#include <malloc.h>  
//1. 对R[0..n-1]按递增有序进行直接插入排序  
void InsertSort(RecType R[],int n)  
{  
    int i,j;  
    RecType tmp;  
    for (i=1; i<n; i++)  
    {  
        tmp=R[i];  
        j=i-1;            //从右向左在有序区R[0..i-1]中找R[i]的插入位置  
        while (j>=0 && tmp.key<R[j].key)  
        {  
            R[j+1]=R[j]; //将关键字大于R[i].key的记录后移  
            j--;  
        }  
        R[j+1]=tmp;      //在j+1处插入R[i]  
    }  
}   
//2. 希尔排序算法  
void ShellSort(RecType R[],int n)  
{  
    int i,j,gap;  
    RecType tmp;  
    gap=n/2;                //增量置初值  
    while (gap>0)  
    {  
        for (i=gap; i<n; i++) //对所有相隔gap位置的所有元素组进行排序  
        {  
            tmp=R[i];  
            j=i-gap;  
            while (j>=0 && tmp.key<R[j].key)//对相隔gap位置的元素组进行排序  
            {  
                R[j+gap]=R[j];  
                j=j-gap;  
            }  
            R[j+gap]=tmp;  
            j=j-gap;  
        }  
        gap=gap/2;  //减小增量  
    }  
}   
//3. 冒泡排序  
void BubbleSort(RecType R[],int n)  
{  
    int i,j,exchange;  
    RecType tmp;  
    for (i=0; i<n-1; i++)  
    {  
        exchange=0;  
        for (j=n-1; j>i; j--)   //比较,找出最小关键字的记录  
            if (R[j].key<R[j-1].key)  
            {  
                tmp=R[j];  //R[j]与R[j-1]进行交换,将最小关键字记录前移  
                R[j]=R[j-1];  
                R[j-1]=tmp;  
                exchange=1;  
            }  
        if (exchange==0)    //没有交换,即结束算法  
            return;  
    }  
}   
//4. 对R[s]至R[t]的元素进行快速排序  
void QuickSortR(RecType R[],int s,int t)  
{  
    int i=s,j=t;  
    RecType tmp;  
    if (s<t)                //区间内至少存在两个元素的情况  
    {  
        tmp=R[s];           //用区间的第1个记录作为基准  
        while (i!=j)        //从区间两端交替向中间扫描,直至i=j为止  
        {  
            while (j>i && R[j].key>=tmp.key)  
                j--;        //从右向左扫描,找第1个小于tmp.key的R[j]  
            R[i]=R[j];      //找到这样的R[j],R[i]"R[j]交换  
            while (i<j && R[i].key<=tmp.key)  
                i++;        //从左向右扫描,找第1个大于tmp.key的记录R[i]  
            R[j]=R[i];      //找到这样的R[i],R[i]"R[j]交换  
        }  
        R[i]=tmp;  
        QuickSortR(R,s,i-1);     //对左区间递归排序  
        QuickSortR(R,i+1,t);     //对右区间递归排序  
    }  
}   
//4. 快速排序辅助函数,对外同其他算法统一接口,内部调用递归的快速排序  
void QuickSort(RecType R[],int n)  
{  
    QuickSortR(R, 0, n-1);  
}  
//5. 直接选择排序  
void SelectSort(RecType R[],int n)  
{  
    int i,j,k;  
    RecType temp;  
    for (i=0; i<n-1; i++)           //做第i趟排序  
    {  
        k=i;  
        for (j=i+1; j<n; j++)   //在当前无序区R[i..n-1]中选key最小的R[k]  
            if (R[j].key<R[k].key)  
                k=j;            //k记下目前找到的最小关键字所在的位置  
        if (k!=i)               //交换R[i]和R[k]  
        {  
            temp=R[i];  
            R[i]=R[k];  
            R[k]=temp;  
        }  
    }  
}   
//6. 堆排序辅助之——调整堆  
void sift(RecType R[],int low,int high)  
{  
    int i=low,j=2*i;                        //R[j]是R[i]的左孩子  
    RecType temp=R[i];  
    while (j<=high)  
    {  
        if (j<high && R[j].key<R[j+1].key)  //若右孩子较大,把j指向右孩子  
            j++;                                //变为2i+1  
        if (temp.key<R[j].key)  
        {  
            R[i]=R[j];                          //将R[j]调整到双亲结点位置上  
            i=j;                                //修改i和j值,以便继续向下筛选  
            j=2*i;  
        }  
        else break;                             //筛选结束  
    }  
    R[i]=temp;                                  //被筛选结点的值放入最终位置  
}   
//6. 堆排序  
void HeapSort(RecType R[],int n)  
{  
    int i;  
    RecType temp;  
    for (i=n/2; i>=1; i--) //循环建立初始堆  
        sift(R,i,n);  
    for (i=n; i>=2; i--) //进行n-1次循环,完成推排序  
    {  
        temp=R[1];       //将第一个元素同当前区间内R[1]对换  
        R[1]=R[i];  
        R[i]=temp;  
        sift(R,1,i-1);   //筛选R[1]结点,得到i-1个结点的堆  
    }  
}  
//7.归并排序辅助1——合并有序表  
void Merge(RecType R[],int low,int mid,int high)  
{  
    RecType *R1;  
    int i=low,j=mid+1,k=0; //k是R1的下标,i、j分别为第1、2段的下标  
    R1=(RecType *)malloc((high-low+1)*sizeof(RecType));  //动态分配空间  
    while (i<=mid && j<=high)       //在第1段和第2段均未扫描完时循环  
        if (R[i].key<=R[j].key)     //将第1段中的记录放入R1中  
        {  
            R1[k]=R[i];  
            i++;  
            k++;  
        }  
        else                            //将第2段中的记录放入R1中  
        {  
            R1[k]=R[j];  
            j++;  
            k++;  
        }  
    while (i<=mid)                      //将第1段余下部分复制到R1  
    {  
        R1[k]=R[i];  
        i++;  
        k++;  
    }  
    while (j<=high)                 //将第2段余下部分复制到R1  
    {  
        R1[k]=R[j];  
        j++;  
        k++;  
    }  
    for (k=0,i=low; i<=high; k++,i++) //将R1复制回R中  
        R[i]=R1[k];  
}   
//7. 归并排序辅助2——一趟归并  
void MergePass(RecType R[],int length,int n)    //对整个数序进行一趟归并  
{  
    int i;  
    for (i=0; i+2*length-1<n; i=i+2*length)     //归并length长的两相邻子表  
        Merge(R,i,i+length-1,i+2*length-1);  
    if (i+length-1<n)                       //余下两个子表,后者长度小于length  
        Merge(R,i,i+length-1,n-1);          //归并这两个子表  
}   
//7. 归并排序  
void MergeSort(RecType R[],int n)           //自底向上的二路归并算法  
{  
    int length;  
    for (length=1; length<n; length=2*length) //进行log2n趟归并  
        MergePass(R,length,n);  
}   
//以下基数排序,为了统一测试有改造  
//8. 基数排序的辅助函数,创建基数排序用的链表  
void CreateLink(RadixRecType *&p,RecType R[],int n)   //采用后插法产生链表  
{  
    int i;  
    RadixRecType *s,*t;  
    for (i=0; i<n; i++)  
    {  
        s=(RadixRecType *)malloc(sizeof(RadixRecType));  
        s->data = R[i].key;  
        if (i==0)  
        {  
            p=s;  
            t=s;  
        }  
        else  
        {  
            t->next=s;  
            t=s;  
        }  
    }  
    t->next=NULL;  
}   
//8. 基数排序的辅助函数,释放基数排序用的链表  
void DestoryLink(RadixRecType *&p)  
{  
    RadixRecType *q;  
    while(p!=NULL)  
    {  
        q=p->next;  
        free(p);  
        p=q;  
    }  
    return;  
}   
//8. 实现基数排序:*p为待排序序列链表指针,基数R和关键字位数D已经作为符号常量定义好  
void RadixSort(RadixRecType *&p)  
{  
    RadixRecType *head[Radix],*tail[Radix],*t; //定义各链队的首尾指针  
    int i,j,k;  
    unsigned int d1, d2=1;   //用于分离出第i位数字,见下面的注释  
    for (i=1; i<=Digits; i++)                  //从低位到高位循环  
    {  
        //分离出倒数第i位数字,先通过对d1=10^i取余,得到其后i位,再通过整除d2=10^(i-1)得到第i位  
        //例如,分离出倒数第1位,即个位数,先对d1=10取余,再整除d2=1  
        //再例如,分离出倒数第2位,即十位数,先对d1=100取余,再整除d2=10  
        //循环之前,d2已经初始化为1,在这一层循环末增加10倍  
        //下面根据d2,得到d1的值  
        d1=d2*10;  
        for (j=0; j<Radix; j++)                 //初始化各链队首、尾指针  
            head[j]=tail[j]=NULL;  
        while (p!=NULL)                 //对于原链表中每个结点循环  
        {  
            k=(p->data%d1)/d2;           //分离出第i位数字k  
            if (head[k]==NULL)          //进行分配  
            {  
                head[k]=p;  
                tail[k]=p;  
            }  
            else  
            {  
                tail[k]->next=p;  
                tail[k]=p;  
            }  
            p=p->next;                  //取下一个待排序的元素  
        }  
        p=NULL;                         //重新用p来收集所有结点  
        for (j=0; j<Radix; j++)             //对于每一个链队循环  
            if (head[j]!=NULL)          //进行收集  
            {  
                if (p==NULL)  
                {  
                    p=head[j];  
                    t=tail[j];  
                }  
                else  
                {  
                    t->next=head[j];  
                    t=tail[j];  
                }  
            }  
        t->next=NULL;                   //最后一个结点的next域置NULL  
        //下面更新用于分离出第i位数字的d2  
        d2*=10;  
    }  
}  



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值