美国培训游记四

博主来美国培训,遇到一位从事研究开发近20年的意大利老头,他对标准和代码了如指掌,毫无保留地分享知识。博主感慨与他在职业素养和敬业精神上的差距,还提到国内和老外对coding的不同心态,以及与老头交流政治的共鸣。
这段时间太忙了,很久没有时间上网,今天偶然来看看,发现还是有人看我的文章,就接着写回忆录了。















来美国之后第二周的星期一,培训我们的老头来了,他是一个意大利人,个子比较高,很瘦。老头从事这个
方面的研究和开发已经有快20年时间了,十分博学。我们这个方向我大概粗粗算了一下,得看标准方面的
东西差不多需要15本左右的SPECIFICATION。以前在国内的时候项目比较忙,我们这方面的标准看
的比较少,而且有许多东西也没有,现在只有问他了,他基本上是一个活字典,几乎所有的东西都知道。
这套代码他已经开发了大概有七八年了,对于这其中的每个类的变量,甚至枚举,他都了如指掌,真是令
人钦佩。从职业素养和敬业精神方面,我感觉真是和他有很大的差距,而且我们以后的开发或许和他们有竞
争关系,但是从中看不到一丝一毫保留的意思。老头的公司不大,他是VP,总共只有大概七八个人的样子,但是
公司的效率是够高的,作为公司的合伙人,他讲自己就是喜欢编码,coding!回来之后,我也常常
想,国内的时候,好像感觉coding就是水平差的人干的活,好像工作几年就肯定需要向其他方向发展,
而且国人大多是这样的心态。










老外感觉就是比较自然,直接。中午我们去西餐管,吃饭,其间谈起了宗教,政治,以及地理,他是一个
民主党信徒。讨厌布什。也讨厌阿诺,任务是名人效应才使其当选州长。但是他也同样任务政治就是用来
愚弄老百姓的工具,呵呵,这一点和我共鸣。
内容概要:本文详细介绍了一个基于Java和Vue的迁移学习与少样本图像分类系统的设计与实现,涵盖项目背景、目标、技术架构、核心算法、前后端代码实现、数据库设计、部署方案及应用领域。系统通过融合迁移学习与少样本学习技术,解决实际场景中样本稀缺、标注成本高、模型泛化能力差等问题,支持数据增强、预训练模型微调、原型网络(ProtoNet)等算法,并实现前后端分离、模块化设计、可视化监控与自动化工作流。项目提供完整的代码示例、API接口规范、数据库表结构及GUI界面,具备高扩展性、安全性和易用性,适用于医疗、工业、农业等多个领域。; 适合人群:具备一定Java、Vue和深度学习基础的研发人员、AI算法工程师、计算机相关专业学生及从事智能图像分析的科研人员。; 使用场景及目标:①在样本极少的场景下实现高精度图像分类,如医疗影像、工业缺陷检测;②构建可扩展、可视化的AI训练与推理平台;③学习如何将Python深度学习模型与Java后端集成,掌握前后端分离的AI系统开发流程;④了解迁移学习、少样本学习在实际工程中的落地方法。; 阅读建议:建议结合文档中的代码示例与流程图,搭建本地开发环境进行实践,重点关注前后端交互逻辑、Python模型服务调用机制及数据库设计,同时可基于项目结构扩展联邦学习、多模态融合等高级功能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值