实时物体识别框架

本文对比了多种目标检测算法,包括YOLO系列、SSD、Faster R-CNN、R-FCN、Fast R-CNN、RCNN及即将发布的Mask R-CNN等。通过不同算法的特点与应用场景分析,为读者提供了选择合适算法的依据。
摘要由CSDN通过智能技术生成


  1. YOLO2 <YOLO9000>
  2. SSD: Single Shot MultiBox Detector
  3. YOLO (V1 )
  4. Faster RCNN
  5. R-FCN
  6. Fast RCNN
  7. RCNN

Mask RCNN is coming up, code is not out yet.  (https://github.com/matterport/Mask_RCNN)



https://www.quora.com/What-is-the-best-algorithm-for-object-detection



另一篇分析快速识别物体模型比较的文章:

https://www.zhihu.com/question/35887527/answer/140239982


self dataset train YOLO1

http://blog.csdn.net/sinat_30071459/article/details/53100791


快速多目标检测 YOLO2:   http://blog.csdn.net/shuzfan/article/details/54018736


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值