MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

故名思意,为了容易满足手机和嵌入式应用的需求。有两个超参数可以调整网络,使得可以兼顾不同的情况,平衡速度和精确度的要求。在优化延迟的同时使得网络尽可能的小。

MobileNet Architecture
MobileNet模型基于depthwise separable convolutions(= depthwise Convolution + 1×1 convolution called a pointwise convolution)。标准卷积和depthwise separable convolutions如图2。

这里写图片描述

Depthwise convolution相对于标准卷积非常有效,但是并不能产生新的特征,所以要通过1 × 1 convolution来生成新的特征。

Network Structure and Training
基于Depthwise convolution建造的MobileNet网络如表1。

这里写图片描述

所有层后边加一个BN,然后再加ReLU,最后的全连接层不增加非线性,直接通过softmax,然后分类,如图3。
之前最后一个卷积完后,每个特征层大小不是1X1,所以需要faltten,但是这个网络到全连接层时已经是1X1。

这里写图片描述

参数和资源分布如表2。

这里写图片描述

Width Multiplier: Thinner Models
第一个超参数α。目的是一致的控制网络网络每一层的“胖瘦”,对于一个给定层和α,输入通道M则变为αM,输出通道N变为αN。α ∈ (0,1] 典型值为1, 0.75, 0.5 和0.25。
Resolution Multiplier: Reduced Representation
第二个超参数ρ。通过设置输入的分辨率来控制所有层的分辨率。ρ ∈ (0,1],设置完后网络分辨率种类为224, 192, 160 or 128。
通过这两个参数,可以极大的减少参数。

实验结论:
在只损失1%的accuracy的情况下,mult-adds and parameters大量减少;将MobileNets“变瘦”比将MobileNets“变短”性能更佳。
表6和表7表示两个超参数对网络性能的影响。

这里写图片描述

图4表示这两个超参数关于mult-adds之间的平衡。图中16个点为α ∈ {1,0.75,0.5,0.25} 和 resolutions {224,192,160,128}的组合。结果成对数线性。

这里写图片描述

图5为这两个参数关于parameters参数的平衡。16个点为α ∈{1,0.75,0.5,0.25} 和resolutions {224,192,160,128}的组合。

这里写图片描述

性能超越了GoogleNet,和VGG16差不多;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值