activate learning-Scaling Up Crowd-Sourcing to Very Large Datasets: A Case for Active Learning

Active Learning Notation

本文是介绍论文Scaling Up Crowd-Sourcing to Very Large Datasets A Case for Active Learning中的AL算法。

  Active learning algorithm主要由:1.一个ranker R; 2. selection strategy S;3. budget allocation strategy Γ。
  本文没有介绍第3部分。
这里写图片描述

一:Apfront Activate Learning

这里写图片描述
这里写图片描述

二:iterative Activate Learning

这里写图片描述
这里写图片描述

根据提供的引用内容,报错信息显示无法为scikit-learn和scikit-image构建wheels,这是安装pyproject.toml-based项目所需的。这种错误通常是由于缺少构建所需的依赖项或编译器问题引起的。 解决此问题的一种方法是确保您的系统上已安装了正确的依赖项。对于scikit-learn和scikit-image,您可能需要安装一些科学计算库,如NumPy和SciPy。您可以使用以下命令来安装这些依赖项: ```shell pip install numpy scipy ``` 另外,还需要确保您的系统上已安装了C编译器。对于Windows用户,您可以安装Microsoft Visual C++ Build Tools。对于Linux用户,您可以安装gcc编译器。安装完这些依赖项后,再次尝试安装scikit-learn和scikit-image。 如果问题仍然存在,您可以尝试使用conda环境来安装这些包。conda是一个流行的Python包管理器,可以处理依赖项和构建问题。您可以按照以下步骤使用conda来安装scikit-learn和scikit-image: 1. 安装Miniconda或Anaconda,这是一个包含conda的Python发行版。 2. 打开终端或命令提示符,并创建一个新的conda环境: ```shell conda create -n myenv python=3.8 ``` 3. 激活新创建的环境: ```shell conda activate myenv ``` 4. 使用conda安装scikit-learn和scikit-image: ```shell conda install scikit-learn scikit-image ``` 这些步骤将帮助您解决无法构建scikit-learn和scikit-image的问题。如果问题仍然存在,请提供更多详细信息,以便我们能够更好地帮助您。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值