今天头给我份Python招聘的笔试题,让我看看难度如何?
最后编程大题是: 请使用python实现整数数组的推排序?
由于过于一直对于此排序很触头,如何用python实现让我有些头疼,于是度娘理清了下概念,开始自己实现,并附上推演过程。
具体概念请参考:http://blog.csdn.net/v_july_v/article/details/6198644
- <span style="font-size:14px;">#! /usr/bin/env python
- # -*- coding: utf-8 -*-
- # vim: tabstop=4 shiftwidth=4 softtabstop=4
- # TODO: left child
- # param: index
- # return: the index of left child
- def leftChild(index):
- return index*2+1
- # TODO: right child
- # param: index
- # return: the index of right child
- def rightChild(index):
- return index*2+2
- # TODO: max exchange
- # param: array index headSize
- def maxHeap(array, index, heapSize):
- # 01 Get the left and right node
- leftInd = leftChild(index)
- rightInd = rightChild(index)
- # 02 compare the left,right,index vals
- # get the max val and ind
- largest = index
- if leftInd < heapSize and array[index] < array[leftInd]:
- largest = leftInd
- if rightInd < heapSize and array[leftInd] < array[rightInd]:
- largest = rightInd
- # 03 exchange the largest and index val when index -ne largest and then recursive
- if largest != index:
- array[largest], array[index] = array[index], array[largest]
- maxHeap(array,largest,heapSize)
- # TODO build the heap
- # param: array
- def buildHeap(array):
- for i in range(len(array)/2,-1,-1):
- maxHeap(array,i,len(array))
- # TODO: heap sort
- # param: array
- # return: heap sorted array
- def heapSort(array):
- buildHeap(array)
- for i in range(len(array)-1,0,-1):
- array[0], array[i] = array[i], array[0]
- maxHeap(array,0,i)
- arr=[1,2,7,4,34,25,67]
- heapSort(arr)
- print arr</span>
Result: [1, 2, 4, 7, 25, 34, 67]
=============华丽的分割线=================
名词解释:
初始数组: 输入,需要排序的数组
初始堆:基于初始数组,创建符合堆特征的完全二叉树
大根堆头: 大根堆的根节点
无序堆:对排序中取出大根堆头后的剩余堆。
1[0]:1为数组的值,0代表标识位
以下为推演过程:
A. 初始数组: 1[0] 2[1] 7[2] 4[3] 34[4] 25[5] 67[6]
B. 初始堆:
条件区间:
- <span style="font-size:14px;">range(len(array)/2,-1,-1) # 即3,2,1,0</span>
子条件区间:
- <span style="font-size:14px;">maxHeap(array,largest,heapSize) #即 最大值的index</span>
1. 条件:index = len(arr)/2 值为3
leftChild: 3*2+1=7 rightChild: 3*2+2=8 此时都大于arrSize(heapSize) Pass
2. 条件: 2
leftChild: 2*2+1=5 rightChild: 2*2+2=6 此时最大值67[6],与7[2] 交换。
此时数组变为:1[0] 2[1] 67[2] 4[3] 34[4] 25[5] 7[6]
2.1 子条件: 6
leftChild: 6*2+1=13 rightChild: 6*2+2=14 此时都大于arrSize(heapSize) 递归回归
3. 条件: 1
leftChild: 1*2+1=3 rightChild: 1*2+2=4 此时最大值34[4],与2[1]交换
此时数组变为:1[0] 34[1] 67[2] 4[3] 2[4] 25[5] 7[6]
3.1 子条件:4
leftChild: 4*2+1=9 rightChild: 4*2+2=10 此时都大于arrSize(heapSize) 递归回归
4. 条件:0
leftChild: 0*2+1=1 rightChild: 0*2+2=2 此时最大值67[2],与1[0]交换
此时数组变为: 67[0] 34[1] 1[2] 4[3] 2[4] 25[5] 7[6]
4..1 子条件: 2
leftChild: 2*2+1=5 rightChild: 2*2+2=6 此时最大值25[5], 与1[2]交换
此时数组变为: 67[0] 34[1] 25[2] 4[3] 2[4] 1[5] 7[6]
4.2 子条件:5
leftChild: 5*2+1=11 rightChild: 5*2+2=12 此时都大于arrSize(heapSize) 递归回归
初始堆为:67[0] 34[1] 25[2] 4[3] 2[4] 1[5] 7[6]
树形展示为:
67[0]
/ \
34[1] 25[2]
/ \ / \
4[3] 2[4] 1[5] 7[6]
C 堆排序:
注意: 条件一直是无序堆的0
1. 交换大堆根头和最后的一个元素。
交换67[0]与7[6],并将67[0]从无序堆中取出,此时无序堆: 7[0] 34[1] 25[2] 4[3] 2[4] 1[5]
根据条件 0 来整理无序堆(逻辑同上): 34[0] 7[1] 25[2] 4[3] 2[4] 1[5]
2. 交换34[0]与1[5],并将34[0]从无序堆中取出,此时无序堆: 1[0] 7[1] 25[2] 4[3] 2[4]
根据条件 0 来整理无序堆为:25[0] 7[1] 1[2] 4[3] 2[4]
3. 重复1和2
最后无序堆中的元素全部取出,并组成堆排序的最后结果。
[1, 2, 4, 7, 25, 34, 67]