快速排序的基本思想
设当前待排序的无序区为 R[low..high],利用分治法可将快速排序的基本思想描述为:
1.分解:
在 R[low..high]中任选一个记录作为基准(Pivot),以此基准将当前无序区划分为左、右两个较小的子区间 R[low..pivotpos-1)和 R[pivotpos+1..high],并使左边子区间中所有记录的关键字均小于等于基准记录(不妨记为 pivot)的关键字 pivot.key,右边的子区间中所有记录的关键字均大于等于 pivot.key,而基准记录 pivot 则位于正确的位置(pivotpos)上,它无须参加后续的排序。
注意: 划分的关键是要求出基准记录所在的位置 pivotpos。划分的结果可以简单地表示为(注意 pivot=R[pivotpos]): R[low..pivotpos-1].keys≤R[pivotpos].key≤R[pivotpos+1..high].keys 其中 low≤pivotpos≤high。
2.求解:
通过递归调用快速排序对左、右子区间 R[low..pivotpos-1]和R[pivotpos+1..high]快速排序。
3.组合:
因为当”求解”步骤中的两个递归调用结束时,其左、右两个子区间已有序。对快速排序而言,”组合”步骤无须做什么,可看作是空操作。
快速排序算法 QuickSort
void QuickSort(SeqList R,int low,int high)
{ //对R[low..high]快速排序
int pivotpos; //划分后的基准记录的位置
if(low<high){//仅当区间长度大于1时才须排序
pivotpos=Partition(R,low,high); //对R[low..high]做划分
QuickSort(R,low,pivotpos-1); //对左区间递归排序
QuickSort(R,pivotpos+1,high); //对右区间递归排序
}
} //QuickSort
划分算法 Partition
简单的划分方法
1.具体做法
第一步:(初始化)设置两个指针 i 和 j,它们的初值分别为区间的下界和上界,即 i=low,i=high;选取无序区的第一个记录 R[i](即 R[low])作为基准记录,并将它保存在变量 pivot 中;
第二步:令 j 自 high 起向左扫描,直到找到第 1 个关键字小于 pivot.key 的记录 R[j],将 R[j])移至 i 所指的位置上,这相当于 R[j] 和基准 R[i](即 pivot)进行了交换,使关键字小于基准关键字 pivot.key 的记录移到了基准的左边,交换后 R[j]中相当于是 pivot;然后,令 i 指针自 i+1 位置开始向右扫描,直至找到第 1 个关键字大于 pivot.key 的记录 R[i],将 R[i]移到 i 所指的位置上,这相当于交换了 R[i] 和基准 R[j],使关键字大于基准关键字的记录移到了基准的右边,交换后 R[i] 中又相当于存放了 pivot;接着令指针 j 自位置 j-1 开始向左扫描,如此交替改变扫描方向,从两端各自往中间靠拢,直至 i=j 时,i便是基准 pivot 最终的位置,将 pivot 放在此位置上就完成了一次划分。
2.一次划分过程
一次划分过程中,具体变化情况动画演示
3.划分算法
int Partition(SeqList R,int i,int j)
{//调用Partition(R,low,high)时,对R[low..high]做划分,
//并返回基准记录的位置
ReceType pivot=R[i]; //用区间的第1个记录作为基准 '
while(i<j){ //从区间两端交替向中间扫描,直至i=j为止
while(i<j&&R[j].key>=pivot.key) //pivot相当于在位置i上
j--; //从右向左扫描,查找第1个关键字小于pivot.key的记录R[j]
if(i<j) //表示找到的R[j]的关键字<pivot.key
R[i++]=R[j]; //相当于交换R[i]和R[j],交换后i指针加1
while(i<j&&R[i].key<=pivot.key) //pivot相当于在位置j上
i++; //从左向右扫描,查找第1个关键字大于pivot.key的记录R[i]
if(i<j) //表示找到了R[i],使R[i].key>pivot.key
R[j--]=R[i]; //相当于交换R[i]和R[j],交换后j指针减1
} //endwhile
R[i]=pivot; //基准记录已被最后定位
return i;
} //partition
快速选择问题
输入n个整数和一个正整数K(1<=K<=n),输出这些整数从小到大排序后的第K个。n<=10
7
【分析】
选择第K大的数,最容易想到的方法是先排序,然后直接输出下标是K-1的元素,但10
7
的规模即使对于O(nlogn)的算法来说也较大。
假设在快速排序的“划分”结束后,数组A[p……r]被分成了A[p……q]和A[q+1……r],则可以根据左边的元素个数q-p+1和k的大小关系只在左边或只在右边递归求解。
所以只在原快速排序的基础上增加if……else语句即可。
可以证明,在期望意义下,程序的时间复杂度为O(n)。
代码如下:
#include <cstdio>
using namespace std;
void QuickSort(int R[], int low, int high,int k);
int Partition(int R[], int i, int j);
int main() {
int n, k;
scanf("%d%d", &n, &k);
int R[n];
for (int i = 0; i < n; i++) {
scanf("%d", &R[i]);
}
QuickSort(R, 0, n - 1,k);
for (int i = 0; i < n; i++) {
printf("%d ", R[i]);
}
printf("\n");
printf("%d", R[k-1]);
return 0;
}
void QuickSort(int R[], int low, int high,int k) {
int pivotpos;
if (low < high) {
pivotpos = Partition(R, low, high);
if(k<pivotpos)
QuickSort(R, low, pivotpos - 1,k);
else
QuickSort(R, pivotpos + 1, high,k);
}
}
int Partition(int R[], int i, int j) {
int pivot = R[i];
while (i < j) {
while (i < j && R[j] >= pivot)
j--;
if (i < j)
R[i++] = R[j];
while (i < j && R[i] <= pivot)
i++;
if (i < j)
R[j--] = R[i];
}
R[i] = pivot;
return i;
}