Excel新函数TEXTJOIN太强大了,这些高级用法太实用了

今天跟大家分享WPS中新函数TEXTJOIN的使用方法和技巧,它不仅仅是一个强大的文本连接函数,还有一些高级用法可以帮助我们快速解决日常难题。

TEXTJOIN函数介绍

作用:TEXTJOIN函数是文本连接函数,使用分隔符连接列表或文本字符串区域。

语法:=TEXTJOIN(分隔符, 忽略空白单元格, 字符串1…)

分隔符:文本字符串,或者为空,或用双引号引起来的一个或多个字符,或对有效文本字符串的引用。如果提供一个数字,则将被视为文本。

忽略空白单元格:如果为 TRUE,则忽略空白单元格,如果是False,则不忽略空值。

字符串1…:为 1 到 253 个要联接的文本项。这些文本项可以是文本字符串或字符串数组,如单元格区域。

 

用法1、TEXTJOIN函数高级用法,一对多查询

图下图所示,左边是班级和学生名单数据表,现在需要根据班级,要把所有学生名单列出来并且用逗号隔开,我们可以使用以下两种方法轻松实现:

1、TEXTJOIN+IF组合

在目标单元格中输入公式

=TEXTJOIN(",",TRUE,IF(A:A=D2,B:B,""))

然后点击回车键,并且下拉填充数据即可。

解读:

这个公式的关键就是巧妙使用IF函数,通过IF函数判断所属班级,如果条件成立就返回对应的学生名称,如果条件不成立就返回空值。

用法2、TEXTJOIN+FILTER组合

在目标单元格中输入公式

=TEXTJOIN(",",TRUE,FILTER(B:B,A:A=D2))

然后点击回车键,并且下拉填充数据即可。

 

解读:

①、同样公式的关键在于使用FILTER筛选函数,先筛选出对应班级的学生,然后再使用TEXTJOIN函数合并到一起。

②、FILTER函数介绍

FILTER是基于定义的条件筛选一系列数据的函数,它由数组,包括,空值三个参数所构成。

使用语法=FILTER(数组,包括,空值)

第一个参数【数组】:就是筛选区域

第二个参数【包括】:就是筛选列=筛选条件

第三个参数【空值】:可以忽略,这个参数就是如果出现错误值可以设置返回信息

用法3、TEXTJOIN函数高级用法,合并单元格保留所有数据内容

在Excel中如果合并单元格,只会保留左上角第一个单元格数据,要想合并单元格后保留所有数据内容一般是不能实现的。但是我们可以TEXTJOIN函数来实现类似的合并单元格保留所有数据内容的功能。

 

方法:

1、在目标单元格中输入公式:

=TEXTJOIN(CHAR(10),TRUE,A2:A8)

点击回车,向有填充数据

2、然后单击【开始】-【自动换行】即可。

解读:

公式中CHAR(10)作用是为了生成换行符,只有这样“自动换行”功能才能发挥作用。

用法4:文本合并去除重复值

如下图所示,左侧是一个姓名名单,需要把名称合并到一起,中间用逗号隔开并且需要去掉姓名中的重复值。

在目标单元格中输入公式:

=TEXTJOIN("、",TRUE,UNIQUE(A2:A7))

 

解读:

如果只使用TEXTJOIN函数来合并文本,如果想去除重复值,我们需要结合UNIQUE函数去除重复项。

用法5、将文本信息合并到一块并且用逗号隔开

如下图所示,把所有姓名合并到一块并且用逗号隔开。

使用公式=TEXTJOIN(",",TRUE,A2:A8)

解读:

①、第一个参数分隔符“、”可以根据实际需要自定义。

②、第二个参数“TRUE”代表忽略空白单元格。

③、第三个参数“A2:A8”就是要合并到一块的字符串。

AIGC ChatGPT 职场案例
AI 绘画 与 短视频制作
PowerBI 商业智能 68集
Mysql 8.0  54集
Oracle 21C 142集
Office 2021实战应用
Python 数据分析实战,
ETL Informatica 数据仓库案例实战 51集
Excel 2021实操 100集,
Excel 2021函数大全 80集
Excel 2021高级图表应用 89集,
Excel 2021大屏可视化制作 56集
Excel 2021实用技巧 300集
PPT 2021 商业汇报实战应用 69集
Tableau  数据分析 80集
FineReport 帆软大屏可视化 50集

送你各类文档模板PPT,表格,大屏可视化 超过5000+模板

以上案例实战获取:  https://edu.csdn.net/combo/detail/2552

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿里数据专家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值