如何使用Python识别滑块验证码

本文介绍使用Python的cv2库识别滑块验证码中的缺口位置,涉及读取图片、边缘检测、缺口匹配等步骤。通过Canny函数识别边缘,matchTemplate函数进行匹配,找到缺口的X轴坐标,并在背景图片上绘制矩形标注。同时提供了完整的识别代码示例。
摘要由CSDN通过智能技术生成

这篇文章讲解了如何使用Python识别滑块验证码中的缺口位置。滑块验证码是一种常见的验证码形式,它通过要求用户拖动一个滑块来验证用户的真实性。而识别滑块验证码中的缺口位置是破解滑块验证码的一种常见方式。

Python中的图像处理库cv2可以用于识别缺口位置。该过程主要分为三个步骤:读取图片、识别图片边缘和缺口匹配。首先使用imread函数读取背景图片和缺口图片,然后使用Canny函数识别出图片的边缘。接着,将图片格式转换为RGB格式,并使用matchTemplate函数在背景图片中搜索对应的缺口。最后,选出其中“概率最高”的点,即为缺口匹配的位置。缺口的X轴坐标就是匹配结果中“概率最高”的点的X坐标。

Ps:动手能力弱的小伙伴可以直接访问www.ttocr.com我的网站来进行识别

为了更好地展示缺口的位置,可以将缺口用矩形框标注出来。完整代码如下:

import cv2

def identify_gap(bg, tp, out):

    # 读取背景图片和缺口图片

    bg_img = cv2.imread(bg) # 背景图片

    tp_img = cv2.imread(tp) # 缺口图片

    # 识别图片边缘

    bg_edge = cv2.Canny(bg_img, 100, 200)

    tp_edge = cv2.Canny(tp_img, 100, 200)

    # 转换图片格式

    bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)

    tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)

    # 缺口匹配

    res = cv2.matchTemplate(bg_pic,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值