caffe学习
suoli0098
计算机视觉、深度学习
展开
-
caffe中Solver文件及其参数含义
在Deep Learning中,往往lossfunction是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。 到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。 ·原创 2017-11-01 15:52:32 · 536 阅读 · 0 评论 -
caffe代码学习方法
1. 初识Caffe 1.1. Caffe相对与其他DL框架的优点和缺点: 优点: 速度快。Google Protocol Buffer数据标准为Caffe提升了效率。 学术论文采用此模型较多。不确定是不是最多,但接触到的不少论文都与Caffe有关(R-CNN,DSN,最近还有人用Caffe实现LSTM) 缺点: 曾更新过重要函数接口。有人反映,偶尔会出现接口变换的情况,自己很久翻译 2017-11-01 16:05:53 · 205 阅读 · 0 评论