快速幂求逆元

思路

题意:
给出两个整数 a , p a,p a,p,其中 p p p 是质数,求出一个整数 b b b,使得 a   ∗   b   =   1 ( m o d   p ) a~*~b~=~1(mod~p) a  b = 1(mod p) 成立(即求 a a a p p p 的乘法逆元)。

首先我们需要记住费马小定理:若 p p p 为质数且 a   m o d   p   ! =   0 a~mod~p~!=~0 a mod p != 0,那么式子 a p − 1   =   1 ( m o d   p ) a^{p-1}~=~1(mod~p) ap1 = 1(mod p) 成立。
我们可以把这个式子转化为 p   ∗   a p − 2   =   1 ( m o d   p ) p~*~a^{p-2}~=~1(mod~p) p  ap2 = 1(mod p)

那么易知:
a   m o d   p   ! =   0 a~mod~p~!=~0 a mod p != 0 时,需要求的乘法逆元 b b b 的值等于 a p − 2 a^{p-2} ap2;当 a   m o d   p   =   0 a~mod~p~=~0 a mod p = 0 时,乘法逆元不存在。

C o d e Code Code

#include <bits/stdc++.h>
#define int long long
#define sz(a) ((int)a.size())
#define all(a) a.begin(), a.end()
using namespace std;
using PII = pair<int, int>;
using i128 = __int128;
const int N = 2e5 + 10;

int qpow(int a, int b, int p) {
	int res = 1;
	while (b) {
		if (b & 1) {
			res = res * a % p;
		}
		a = a * a % p;
		b >>= 1;
	}
	return res;
}

signed main() {
	int a, p;
	cin >> a >> p;
	if (p >= 2 && a % p) {
		cout << qpow(a, p - 2, p) << "\n";
	} else {
		cout << "impossible\n";
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值