线索化中序、先序、后序遍历二叉树的方式(待补充完整)

线索化遍历优点在于不需要递归和栈,空间复杂度降到O(1),且时间复杂度仍未O(n)。

期间会暂时修改树的数据结构,遍历结束后恢复。


线索化中序遍历二叉树

public void morrisTraversal(TreeNode root){
        TreeNode temp = null;
        while(root!=null){
            if(root.left!=null){
                // connect threading for root
                temp = root.left;
                while(temp.right!=null && temp.right != root)
                    temp = temp.right;
                // the threading already exists
                if(temp.right!=null){
                    temp.right = null;
                    System.out.println(root.val);
                    root = root.right;
                }else{
                    // construct the threading
                    temp.right = root;
                    root = root.left;
                }
            }else{
                System.out.println(root.val);
                root = root.right;
            }
        }
    }


当然,我很乐意帮助你理解并实现二叉树遍历和重构。 **1. ** **二叉树遍历** - **序遍历(Preorder Traversal)**: 访问根节点,然后递归地遍历左子树,最后遍历右子树。 ```c void preorder(struct TreeNode* root) { if (root != NULL) { printf("%d ", root->val); // 访问根 preorder(root->left); // 左子树 preorder(root->right); // 右子树 } } ``` - **中序遍历(Inorder Traversal)**: 递归地遍历左子树,然后访问根节点,最后遍历右子树。 ```c void inorder(struct TreeNode* root) { if (root != NULL) { inorder(root->left); printf("%d ", root->val); // 访问根 inorder(root->right); } } ``` - **后序遍历(Postorder Traversal)**: 递归地遍历左子树和右子树,最后访问根节点。 ```c void postorder(struct TreeNode* root) { if (root != NULL) { postorder(root->left); postorder(root->right); printf("%d ", root->val); // 访问根 } } ``` **2. ** **从后序遍历重建二叉树(Reconstructing Tree from Preorder and Postorder)** 这种方法通常使用线索二叉树(也叫带附加信息的二叉树),因为在给定的两个列中,后序遍历中的最后一个元素总是根节点,而这个信息可以帮助我们定位左右子树的位置。下面是基本步骤: - 遍历后序列,找到最后一个元素(根节点)。 - 根据列,找到根节点对应的值。 - 将根节点插入到新树中。 - 分别对左右子树进行同样的操作,直到所有节点都添加完毕。 这里没有直接的代码示例,因为重建过程需要手动处理线索或使用动态数据结构(如栈)来存储临时信息,但主要思路就是这样。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值