Elasticsearch索引数据大批量删除接口优化

一、需求

每隔一段时间,删除N天前的数据,索引只保留最近几天的数据(索引不是按照日期生成的,不能直接删除整个索引)。【elasticsearch-version-5.x】

二、索引数据删除接口

使用接口_delete_by_query,定期向集群提交批量删除任务,http请求不用等待删除任务完成才返回,而是在提交任务之后即时返回任务ID。使用_tasks接口定期检查删除任务的运行状态。这种方式解决了在删除大批量数据的时候Read timed out问题(_delete_by_query接口设置批量提交对于这个问题无解)。

在实际工程使用中,我们需要把elasticsearch的http接口全部封装为JavaWeb工程开发者易于使用和理解的依赖工程的形式。因此在下面的实现中保留此种方式,没有完全按照脚本的形式实现,而是通过jar+shell的形式实现这个功能,并且在封装的es接口包里面保留了这个删除接口。

2.1使用到的elasticsearch核心接口

# _delete_by_query接口
http://localhost:9210/indexName/indexType/_delete_by_query?refresh=true&scroll_size=1000&conflicts=proceed&wait_for_completion=false
# _tasks接口
http://localhost:9210/_tasks/EXlbuEGgRZK-IYKoOHmqWQ:990296121

2.2封装删除脚本

#!/usr/bin/env bash

myJarPath=./lib/xxx.jar

# ---------------------------启动索引数据删除进程---------------------------

# 索引类型
indexType="indexType"

# 索引名称-多个索引名称使用逗号分隔
indexName="indexName"

# IP和端口-使用冒号分隔
ipPort="localhost:9200"

# 索引mapping中的时间字段
timeField="pubtime"

# 每隔delayTime执行一次删除数据操作 - 延时执行-支持按天/小时/分钟(格式数字加d/h/m:1d/24h/60m/60s)
delayTime="2s"

# 删除beforeDataTime以前的数据 - 行一次时删除多久以前的数据-支持按天/小时/分钟(格式数字加d/h/m:1d/24h/60m/60s)
beforeDataTime="2d"

# 是否启动DEBUG模式
debug="true"

#*****************************************************************
# 是否启用force merge(释放磁盘空间 - cpu/io消耗增加,缓存失效)
# 1、对于不再生成新分段的索引,建议打开此配置;2、如果索引在不断的产生新分段建议关闭此配置-通过修改集群段合并策略优化
#*****************************************************************
isForceMerge="false"

nohup java -Xmx512m -cp ${myJarPath} casia.isi.delete.DeleteIndexData ${indexType} ${indexName} ${ipPort} ${timeField} ${delayTime} ${beforeDataTime} ${debug} ${isForceMerge} >>logs/delete.DeleteIndexData.log 2>&1 &

2.3封装接口实现

package casia.isi.elasticsearch.operation.delete.shell;
/**
 *         ┏┓       ┏┓+ +
 *        ┏┛┻━━━━━━━┛┻┓ + +
 *        ┃       ┃
 *        ┃   ━   ┃ ++ + + +
 *        █████━█████  ┃+
 *        ┃       ┃ +
 *        ┃   ┻   ┃
 *        ┃       ┃ + +
 *        ┗━━┓    ┏━┛
 * ┃    ┃
 *          ┃    ┃ + + + +
 *          ┃   ┃ Code is far away from     bug with the animal protecting
 *          ┃   ┃ +
 *          ┃   ┃
 *          ┃   ┃  +
 *          ┃    ┗━━━┓ + +
 *          ┃      ┣┓
 *          ┃      ┏┛
 *          ┗┓┓┏━━━┳┓┏┛ + + + +
 *           ┃┫┫  ┃┫┫
 *           ┗┻┛  ┗┻┛+ + + +
 */

import casia.isi.elasticsearch.common.FieldOccurs;
import casia.isi.elasticsearch.common.RangeOccurs;
import casia.isi.elasticsearch.operation.delete.EsIndexDelete;
import casia.isi.elasticsearch.util.DateUtil;
import casia.isi.elasticsearch.util.StringUtil;
import com.alibaba.fastjson.JSONObject;

/**
 * @Description: TODO(监控删除索引数据)
 * @date 2019/5/30 15:27
 */
public final class DeleteDataByShell {

    private static EsIndexDelete esIndexDataDelete;

    private static String indexType;
    private static String indexName;
    private static String ipPort;

    private static String timeField;
    private static String delayTime;
    private static String beforeDataTime;
    private static boolean isForceMerge = false;

    // DELETE WORK TASK ID
    private static String lastTaskId;

    public static boolean debug = false;

    /**
     * @param indexType:索引类型
     * @param indexName:索引名称-多个索引名称使用逗号分隔
     * @param ipPort:IP和端口-使用冒号分隔
     * @param timeField:索引mapping中的时间字段
     * @param delayTime:延时执行-支持按天/小时/分钟(格式数字加d/h/m:1d/24h/60m/60s)
     * @param beforeDataTime:执行一次时删除多久以前的数据-支持按天/小时/分钟(格式数字加d/h/m:1d/24h/60m/60s)
     * @param isForceMerge:true启用force-merge
     * @return
     * @Description: TODO(为监控程序创建一个索引数据删除对象)
     */
    public DeleteDataByShell(String indexType, String indexName, String ipPort, String timeField,
                             String delayTime, String beforeDataTime, boolean isForceMerge) {
        this.esIndexDataDelete = new EsIndexDelete(ipPort, indexName, indexType);

        this.indexType = indexType;
        this.indexName = indexName;
        this.ipPort = ipPort;

        this.timeField = timeField;
        this.delayTime = delayTime;
        this.beforeDataTime = beforeDataTime;

        this.isForceMerge = isForceMerge;
    }

    /**
     * @return
     * @Description: TODO(启动监控删除)
     */
    public void run() {

        boolean isExcute = check();
        while (isExcute) {
            try {

                // 执行删除
                executeDelete();

                // 延时执行
                sleep();

            } catch (Exception e) {
                System.out.println("Delete data exception,please check your parameters!");
                System.out.println("indexType:" + indexType);
                System.out.println("indexName:" + indexName);
                System.out.println("ipPort:" + ipPort);
                System.out.println("timeField:" + timeField);
                System.out.println("delayTime:" + delayTime);
                System.out.println("beforeDataTime:" + beforeDataTime);
                esIndexDataDelete.reset();
            }
        }
    }

    private boolean check() {
        if (this.timeField != null && this.delayTime != null && this.beforeDataTime != null) {
            return true;
        }
        return false;
    }

    private void sleep() throws InterruptedException {
        Thread.sleep(dhmToMill(delayTime));
    }

    private void outputResult() {
        System.out.println("Delay time:" + delayTime);
        System.out.println("Delete data from " + beforeDataTime + " ago.Current system time:" + DateUtil.millToTimeStr(System.currentTimeMillis()));
        if (debug) {
            System.out.println("Query url:" + esIndexDataDelete.getQueryUrl());
            System.out.println("Query json:" + esIndexDataDelete.getQueryString());
            System.out.println("Query result json:" + esIndexDataDelete.getQueryReslut());
        }
        lastTaskId = setTaskId(esIndexDataDelete.getQueryReslut());
    }

    /**
     * @param { "task": "EXlbuEGgRZK-IYKoOHmqWQ:xxxxxxx"
     *          }
     * @return
     * @Description: TODO(设置taskID)
     */
    private String setTaskId(String queryReslut) {
        JSONObject object = JSONObject.parseObject(queryReslut);
        return object.getString("task");
    }

    private void executeDelete() {

        // 输出上一个task的信息
        System.out.println("===========================================EXECUTE DELETE TASK===========================================");
        if (lastTaskId != null && !"".equals(lastTaskId)) {
            System.out.println(esIndexDataDelete.outputLastTaskInfo(lastTaskId));
        }

        String currentThreadTime = getCurrentThreadTime();

        esIndexDataDelete.addRangeTerms(timeField, currentThreadTime, FieldOccurs.MUST, RangeOccurs.LTE);
        esIndexDataDelete.setRefresh(true);
        esIndexDataDelete.setScrollSize(1000);
        esIndexDataDelete.conflictsProceed("proceed");
        esIndexDataDelete.setWaitForCompletion(false);
        esIndexDataDelete.execute();

        // 输出删除统计结果
        outputResult();

        // 释放磁盘空间(执行段合并操作)- CPU/IO消耗增加,缓存失效
        if (isForceMerge) {
            System.out.println(esIndexDataDelete.forceMerge());
        }

        esIndexDataDelete.reset();
    }

    private String getCurrentThreadTime() {
        long mill = System.currentTimeMillis() - dhmToMill(beforeDataTime);
        return DateUtil.millToTimeStr(mill);
    }

    private long dhmToMill(String dhmStr) {
        if (dhmStr != null && !"".equals(dhmStr)) {
            int number = Integer.valueOf(StringUtil.cutNumber(dhmStr));
            if (dhmStr.contains("d")) {
                return number * 86400000;
            } else if (dhmStr.contains("h")) {
                return number * 3600000;
            } else if (dhmStr.contains("m")) {
                return number * 60000;
            } else if (dhmStr.contains("s")) {
                return number * 1000;
            }
        }
        return 0;
    }

    /**
     * @param
     * @return
     * @Description: TODO(Delete thread main entrance)
     */
    public static void main(String[] args) {
        String indexType = args[0];
        String indexName = args[1];
        String ipPort = args[2];
        String timeField = args[3];
        String delayTime = args[4];
        String beforeDataTime = args[5];
        DeleteDataByShell.debug = Boolean.valueOf(args[6]);
        String isForceMerge = args[7];
        new DeleteDataByShell(indexType, indexName, ipPort, timeField, delayTime, beforeDataTime, Boolean.valueOf(isForceMerge)).run();
    }

}

三、Lucene分段处理的优化

经过以上操作索引中的数据可以被正确的标记为删除,并且及时刷新查询显示。但是标记刷新之后,索引分段数据并没有将磁盘空间及时释放,还依赖于lucene分段合并的处理。

使用forcemerge可以及时释放磁盘空间,但是会带来cpu/io消耗增加,缓存失效等问题。这种问题对查询性能带来影响。但是可以按照具体的使用场景来采取措施:1、对于不再生成新分段的索引(不再有数据被索引和更新),可以考虑人工启动分段merge操作;2、如果索引在不断的产生新分段(数据被索引),通过修改集群段合并策略优化。在我们的需求中则必须采用第二种方式,线上系统人工_forcemerge带来的性能问题是不可接受的。

3.1、refersh

es默认每秒进行自动刷新,这带来的好处是新索引的数据可以及时对搜索可见。随之带来的问题是影响性能:某些缓存将会失效,拖慢搜索请求,而且重新打开索引的过程本身也需要一些处理能力,拖慢了索引的建立。

// 索引级setting
"index.refresh_interval": "5s",

3.2、flush

flush操作是将内存数据冲刷到磁盘。内存缓冲区已满、事务日志已满、时间间隔已到,都会触发flush操作。具体策略请查阅相关文档。

// 集群配置elasticsearch.yml-内存缓冲区大小在elasticsearch.yml配置文件定义-可设置为JVM堆内存的百分比10%
"indices.memory.index_buffer_size":"3gb"

// 索引级setting-触动冲刷得规模-可设置为JVM堆内存得百分比10%(默认512mb)
"index.translog.flush_threshold_size": "3gb"

// 索引级setting-冲刷之间的时间间隔(默认是30m)
"index.translog.flush_threshold_period": "30m"

3.3、合并策略

使用lucene默认的分层合并策略。关于分层合并策略的介绍请移步es官网。

// 索引级setting-每层分段数(segments_per_tier设为与max_merge_at_once相等可减少合并次数)
"index.merge.policy.segments_per_tier":5

// 索引级setting-每层合并的最大分段数(默认是10)
"index.merge.policy.max_merge_at_once": 5

// 索引级setting-最大分段规模(默认是5g)
"index.merge.policy.max_merged_segment": "1gb"

// 索引级setting-用于合并的最大线程数(设置为1可以让磁盘更好的运转)
// 要注意的是如果你是用HDD而非SSD的磁盘的话,最好是用单线程为妙。
"index.merge.scheduler.max_thread_count": 1

3.4、存储限流

存储限流和存储的优化可以有效提升I/O的吞吐量。
存储限流的原因:过度的合并会拖慢集群。由于I/O的等待,会导致CPU负载也会很高。

// 集群配置elasticsearch.yml存储限流设置默认20mb(SSD-增加到100~200MB)
"indices.store.throttle.max_bytes_per_sec":"20mb"

// 集群配置elasticsearch.yml使存储限流的设置应用到所有的es操作
"indices.store.throttle.type":"all"

3.5、存储

存储使用默认存储,主要考虑调整存储限流的设置。
存储类型:1、mmapfs-通常用于大型文件。eg.词条字典;2、niofs-其它类型文件。eg.存储字段。详细优化手段请移步es官方参考文档。

3.6、使用postman设置索引级配置

// URL
PUT http://localhost:9210/indexName/_settings

// PARAMETERS
{
    "index.refresh_interval": "5s",
    "index.translog": {
        "flush_threshold_size": "3gb",
    },
    "index.merge": {
        "policy": {
            "segments_per_tier": 5,
            "max_merge_at_once": 5,
            "max_merged_segment": "1gb"
        },
        "scheduler.max_thread_count": 1
    }
}

// RESPONSBODY
{
    "acknowledged": true
}

// 使用GET接口查看setting
GET http://localhost:9210/indexName/_settings
{
  "indexName": {
    "settings": {
      "index": {
        "refresh_interval": "5s",
        "number_of_shards": "5",
        "translog": {
          "flush_threshold_size": "3gb"
        },
        "provided_name": "indexName",
        "merge": {
          "scheduler": {
            "max_thread_count": "1"
          },
          "policy": {
            "segments_per_tier": "5",
            "max_merge_at_once": "5",
            "max_merged_segment": "1gb"
          }
        },
        "creation_date": "1559195227068",
        "number_of_replicas": "0",
        "uuid": "aDekoukTQL2HeB_aQy_HFA",
        "version": {
          "created": "5060399"
        }
      }
    }
  }
}

postman设置index的setting:
在这里插入图片描述
Lucene分段处理优化之后,很明显可以看到Heap Memory消耗下降了将近一般左右(之前的图有一个驼峰式的下降效果忘记截图了:)gg):
在这里插入图片描述

四、删除接口运行效率统计分析

使用_tasks接口,计算平均处理速率。

http://localhost:9210/_tasks/EXlbuEGgRZK-IYKoOHmqWQ:98453352X
{
    "completed": true,
    "task": {
        "node": "EXlbuEGgRZK-IYKoOHmqWQ",
        "id": 984533525,
        "type": "transport",
        "action": "indices:data/write/delete/byquery",
        "status": {
            "total": 10399385,
            "updated": 0,
            "created": 0,
            "deleted": 4784168,
            "batches": 10400,
            "version_conflicts": 5615217,
            "noops": 0,
            "retries": {
                "bulk": 0,
                "search": 0
            },
            "throttled_millis": 0,
            "requests_per_second": -1,
            "throttled_until_millis": 0
        },
        "description": "delete-by-query [indexName]",
        "start_time_in_millis": 1559727929590,
        "running_time_in_nanos": 3237112234217,
        "cancellable": true
    },
    "response": {
        "took": 3237112,
        "timed_out": false,
        "total": 10399385,
        "updated": 0,
        "created": 0,
        "deleted": 4784168,
        "batches": 10400,
        "version_conflicts": 5615217,
        "noops": 0,
        "retries": {
            "bulk": 0,
            "search": 0
        },
        "throttled_millis": 0,
        "requests_per_second": -1,
        "throttled_until_millis": 0,
        "failures": []
    }
}

类似上述结果,可以根据task的运行情况计算处理效率。使用running_time_in_nanos和deleted字段的数据计算平均处理速率。服务器配置:1、Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz-32核,2、磁盘-HDD1.6T,3、内存-128G。

数据量/总耗时速率
100万/792s/13分钟1262t/s
219万/1768s/29分钟1238t/s
480万/3237s/53分钟1482t/s

在如上的task统计结果中,可以看到有很多数据是标记为version_conflicts。在轮询的删除过程中需要被删除的数据最终都会被删除(每30分钟运行一次删除进程)。如果对于数据删除时效性要求比较高的话,需要解决这个问题。并且继续优化删除策略。

// 没有数据版本冲突的删除任务,返回的信息是这样的(version_conflicts=0)
{
    "completed": true,
    "task": {
        "node": "EXlbuEGgRZK-IYKoOHmqWQ",
        "id": 990296121,
        "type": "transport",
        "action": "indices:data/write/delete/byquery",
        "status": {
            "total": 170733,
            "updated": 0,
            "created": 0,
            "deleted": 170733,
            "batches": 171,
            "version_conflicts": 0,
            "noops": 0,
            "retries": {
                "bulk": 0,
                "search": 0
            },
            "throttled_millis": 0,
            "requests_per_second": -1,
            "throttled_until_millis": 0
        },
        "description": "delete-by-query [news_small, blog_small, forum_threads_small, mblog_info_small, video_brief_small, wechat_message_xigua_small, appdata_small, newspaper_info_small][monitor_caiji_small]",
        "start_time_in_millis": 1559731529771,
        "running_time_in_nanos": 71981947551,
        "cancellable": true
    },
    "response": {
        "took": 71981,
        "timed_out": false,
        "total": 170733,
        "updated": 0,
        "created": 0,
        "deleted": 170733,
        "batches": 171,
        "version_conflicts": 0,
        "noops": 0,
        "retries": {
            "bulk": 0,
            "search": 0
        },
        "throttled_millis": 0,
        "requests_per_second": -1,
        "throttled_until_millis": 0,
        "failures": []
    }
}

五、继续优化

在调用_delete_by_query接口时,设置参数refresh=wait_for。

refresh参数-true表示:立即刷新主分片和副分片;false:表示不刷新,不设置此条件默认不刷新;wait_for:使用集群自动刷新机制(默认1s,在索引级自定义5s或者其它值,根据业务决定。本次测试使用的5s)。
经过_tasks接口统计,发现优化这个参数之后,每秒的处理能力提升了3~4倍,1262t/s->4115t/s。

数据量/总耗时速率
100万/243s/4分钟4115t/s
122万/297s/5分钟4107t/s
{
    "completed": true,
    "task": {
        "node": "EXlbuEGgRZK-IYKoOHmqWQ",
        "id": 1111458358,
        "type": "transport",
        "action": "indices:data/write/delete/byquery",
        "status": {
            "total": 1215333,
            "updated": 0,
            "created": 0,
            "deleted": 1215333,
            "batches": 1216,
            "version_conflicts": 0,
            "noops": 0,
            "retries": {
                "bulk": 0,
                "search": 0
            },
            "throttled_millis": 0,
            "requests_per_second": -1,
            "throttled_until_millis": 0
        },
        "description": "delete-by-query [indexName]",
        "start_time_in_millis": 1559802968421,
        "running_time_in_nanos": 297299330904,
        "cancellable": true
    },
    "response": {
        "took": 297299,
        "timed_out": false,
        "total": 1215333,
        "updated": 0,
        "created": 0,
        "deleted": 1215333,
        "batches": 1216,
        "version_conflicts": 0,
        "noops": 0,
        "retries": {
            "bulk": 0,
            "search": 0
        },
        "throttled_millis": 0,
        "requests_per_second": -1,
        "throttled_until_millis": 0,
        "failures": []
    }
}
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马超的博客

谢谢大佬的赞赏 :)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值