自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(272)
  • 收藏
  • 关注

原创 卷积神经网络概念与原理,卷积神经网络理论基础

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。[1] 它包括卷积层(alternating convolutional layer)和池层(pooling layer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。

2022-10-25 10:57:55 690 1

原创 卷积神经网络 图像处理,卷积神经网络 图像识别

卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。

2022-10-24 10:19:11 630

原创 神经网络梯度公式推导,深度神经网络梯度消失

累乘中一个梯度小于1,那么不断累乘,这个值会越来越小,梯度衰减很大,迅速接近0。在神经网络中是离输出层近的参数,梯度越大,远的参数,梯度越接近0。根本原因是sigmoid函数的缺陷。方法:1、好的初始化方法,逐层预训练,后向传播微调。2、换激活函数,用relu,leaky——relu。靠的是使梯度靠近1或等于1,避免了在累乘过程中,结果迅速衰减。避免梯度消失和梯度爆炸的方案:使用新的激活函数Sigmoid 函数 和 双曲正切函数都会导致梯度消失的问题。

2022-10-24 10:17:46 441

原创 神经网络输入图片大小,图神经网络 图像处理

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。

2022-10-24 10:16:39 516

原创 在选择神经网络的深度时,下面哪些因素需要考虑

这种分层结构,是比较接近人类大脑的结构的。传统神经网络(这里作者主要指前向神经网络)中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。

2022-10-24 10:15:34 338

原创 神经网络怎么看训练效果,神经网络如何进行预测

下面是几个仿真实验,用了不同的训练函数:1.创建BP网络的学习函数,训练函数和性能函数都采用default值,分别为learngdm,trainlm和mse时的逼近结果:由此可见,进过200次训练后,虽然网络的性能还没有为0,但是输出均方误差已经很小了,MSE=6.72804e-0.06,显示的结果也证明P和T之间非线性映射关系的拟合是非常精确的;而最后输出层的值和实际变量的值会有误差,神经网络会通过不断地训练,更改权重和偏置的值来使误差尽可能的小,当误差小到一定程度,该神经网络的回归预测就算成功了。

2022-10-24 10:14:26 938

原创 基于matlab的神经网络设计,matlab神经网络训练图片

P_test=[6月]';%6月数据预测7月P_test=[P_test/50];表示网络训练预测时,用了简单的回归分析,一部分数据用来训练的情况,一部分数据用来确认训练情况,剩下的数据用来测试,以及最后整体状况。图上的三个彩色实线分别是:每一代BP训练过程的MSE指标的性能,每一代BP交叉验证过程的MSE指标的性能以及BP测试的MSE指标在每一代中执行的过程。

2022-10-24 10:13:19 1563

原创 神经网络模型架构教程pdf,如何搭建神经网络模型

6)计算W[S1][S0],b[S1];9))输出W1[S1][S0],b1[S1]。三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…

2022-10-24 10:12:13 260

原创 人体的神经系统图 分布,人体脑神经系统分布图

神经组织:由神经细胞和神经胶质细胞组成神经细胞神经细胞:也叫神经元,约有10^12个神经胶质细胞:数量为神经元的10~50倍,对神经元起支持、保护、营养和绝缘的作用,也参与神经递质和活性物质的代谢尼氏体:强嗜碱性,分布均匀,在大神经元,如脊髓运动神经元,呈粗大的斑块状,在小神经元,如如神经节内的神经元,呈颗粒状。周围神经系统的主要功能,是得到大脑的指令以后,让肢体产生正确的运动,即能够正确地拿筷子、读书、正确地书写及思维创作,但需通过中枢神经系统和周围神经系统的互相配合,才能够让肢体语言得到统一。

2022-10-23 11:28:36 2266

原创 用于预测的神经网络模型,有哪些神经网络模型

首先,判断一个专业是否具有较强的优势,需要从多个维度来进行考虑,既要考虑专业的发展前景,同时也要考虑专业的就业情况、难易程度等等,另外对于不同的学习者来说,由于自身知识结构和能力特点上的差异,并不是所有人都适合学习某一类专业,比如人工智能专业对于学习者的数学基础就有较高的要求。2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。深度学习是无监督学习的一种。

2022-10-22 11:29:13 2489

原创 神经网络算法的应用领域,神经网络算法有什么用

创建一个前馈网络net=newff(minmax(x),[20,1],{'tansig','purelin'});plot(x,y1,'r*',x,y,'b--')执行结果。BP神经网络是最基本、最常用的神经网络,Matlab有专用函数来建立、训练它,主要就是newff()、train()、sim()这三个函数matlab,神经网络算法,算法,软件,机械BP神经网络是最基本、最常用的神经网络,Matlab有专用函数来建立、训练它,主要就是newff()、train()、sim()这三个函数。

2022-10-22 11:27:47 174

原创 神经网络和深度神经网络,图神经网络和神经网络

这种分层结构,是比较接近人类大脑的结构的。现在回到我们的主题Deep Learning,我们需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设我们设计了一个系统S(有n层),我们通过调整系统中参数,使得它的输出仍然是输入I,那么我们就可以自动地获取得到输入I的一系列层次特征,即S1,…2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。

2022-10-21 12:11:10 427

原创 神经系统解剖结构图,神经系统解剖图片

扩展资料:人类单个受精卵发育成一个个体,这个过程在很大程度上还是相对神秘的,原因就在于发育过程的复杂性:从单个细胞,发育成几百万个有特殊功能的细胞到成熟个体的几百亿个细胞,而这种复杂的顶点是中枢神经系统的发育。人类的思维活动也是中枢神经系统的功能。中枢神经系统是由胚胎的外胚层发育形成的,在神经胚阶段,脊索是胚胎早期纵贯胚胎的中轴,诱导其上方的未分化的外胚层细胞转变为中枢神经系统的原基。1、中枢神经系统中枢神经系统是由脑和脊髓的组成,(脑和脊髓是各种反射弧的中枢部分)是人体神经系统的最主体部分。

2022-10-21 12:09:43 1115

原创 人体神经元与胶质关系图,神经元和神经胶质关系

1.中枢:主要包括星形胶质细胞(astrocyte)( 纤维性星形胶质细胞、原浆性星形胶质细胞)、少突胶质细胞(oligodendrocyte)、小胶质细胞(microglia)、室管膜细胞(ependymal cell)以及管周膜细胞、脉络丛上皮细胞、伯格曼胶质细胞、米勒细胞、垂体细胞和伸展细胞等。神经元的功能 2.神经元的功能:神经元的基本功能是通过接受、整合、传导和输出信息实现信息交换 脑是由神经元构成的,神经元群通过各个神经元的信息交换,实现脑的分析功能,进而实现样本的交换产出。

2022-10-21 12:08:19 1606

原创 图像处理用什么神经网络,人工神经网络图像识别

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。

2022-10-17 14:50:53 537

原创 神经网络可以用来预测吗,如何用神经网络做预测

t1' P']% 画出预测图figure(6),plot(t,x,'b*-'),hold onplot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid onxlabel('周数'),ylabel('销售量');str=['BP神经网络预测',num2str(length(x)+1),'-',num2str(length(x)+20),'周的销售量'];title(str)str1=['1-',num2str(length(x)),'周的销售量'];

2022-10-17 14:49:28 1279

原创 学神经网络需要什么基础,神经网络的数学基础

神经网络,遗传算法等智能算法在模式识别有非常重要的应用,但是一般不需要学习计算机学科的人工智能,我们控制有一个交叉学科叫做智能控制是讲这些的,智能控制不需要什么基础,有中学数学的集合和对空间有一点点的了解就足够了,模糊数学的基础是包含在这门学科里的。还有一个最重要的是有关优化方法的基本理论,很多的模式识别的问题,就是一个求最优解的问题。广义的说,机器学习的核心是统计推断,机器学习的巨头不少都是统计学大师,如迈克尔乔丹,杨乐坤,辛顿等,另外机器学习中大量用到贝叶斯公式,隐马尔科夫模型等等。

2022-10-17 14:48:21 410

原创 神经网络评价分类指标有,神经网络综合评价方法

The neuron -------------------------------------------------------------------------------- 虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。(一)神经网络评价法的步骤利用神经网络对复垦潜力进行评价的目的就是对某个指标的输入产生一个预期的评价结果,在此过程中需要对网络的连接弧权值进行不断的调整。

2022-10-17 14:46:55 1222

原创 神经网络应用论文题目,神经网络应用论文选题

利用由GT-Power计算得到的数据进行ANN训练和测试,并选择预测精度最好的ANN模型,以用于进一步的Atkinson循环发动机的设计和优化工作。4.2人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。但仅这一共性,不足以构成一个完整的体系。

2022-10-17 14:45:49 597

原创 小波变换神经网络

例子:求下列数串的平均数 3、4、3、3、3、2、4、4、3、3、 一般求法为(3+4+3+3+3+2+4+4+3+3)/10=3.2 加权求法为(6*3+3*4+2)/10=3.2 其中3出现6次,4出现3次,2出现1次.6、3、1就叫权数。3、在matlab中命令行窗口中定义输入P,输出T,·通过“newff(minmax(P),[5,1]构建BP神经网络,“[net,tr]=train(net,P,T);在训练智能体执行任务时,会选择一个典型的神经网络框架,并相信它有潜力为这个任务编码特定的策略。

2022-10-17 14:44:43 407

原创 bp是什么意思贷款利率,bp在利率是什么意思

基点分为:1、增强基点(strengthening Basis)2、减弱基点(weakening Basis)3、国家基点(country Basis)4、溢价基点(Premium Basis)基点的产生原因:1、商品的储藏成本;基点分为:1、增强基点(strengthening Basis)2、减弱基点(weakening Basis)3、国家基点(country Basis)4、溢价基点(Premium Basis)基点的产生原因:1、商品的储藏成本;1个基点等于0.01%,即1%的百分之一。

2022-10-17 13:59:27 13856

原创 bp神经网络解决什么问题,bp神经网络数据预处理

初始的权值和偏差一般是在0-1之间,随机选取某一0-1之间的值作为某一权值或偏差的值原因在于:1、数据预处理阶段会将所有的数据规范化到0-1之间,并且神经网络的输出也是0-1之间的向量,因此其中的网络结点值也应位于0-1中2、随机初始化的优势在于可有效避免梯度消失或梯度爆炸的问题,增加网络的稳定性。输出的问题,一般模式识别会用 0 1向量来代表,例如你有三类,目标输出应该是[ 0 1 0]这样,来代表它是第2类, 训练的时候用 0 1 0,当然,预测到的可能是[ 0.1 0.9 0.1]这样。

2022-10-17 13:58:21 1521

原创 神经网络处理器异构加速,神经网络处理器的特点

为什么没这么做,因为移动端的使用需求跟平台端是不同的,移动端讲究低功耗,同时不同厂家不同系统会有很多个性化的功能需求,比如人脸识别,这其实就是一种个性化的功能,移动端需要有NPU单元来承担这样的功能运算。为了表达特定的知识,使用者通常需要(通过某些特定的算法)调整人工神经网络中突触的取值、网络的拓扑结构等。荣耀play是一款在2018年6月上市的手机,以下是这款手机的部分参数:一、性能:荣耀首款搭载GPU Turbo的手机,带来持续稳定高帧率的游戏体验,画面平滑,不抖动,不拖影。一体化金属机身,触感细腻。

2022-10-17 13:57:15 1483

原创 神经网络的主要应用领域,神经网络发展介绍视频

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。目前使用得最广泛的是T.Koholen的定义,即"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。"如果我们将人脑神经信息活动的特点与现行冯·诺依曼计算机的工作方式进行比较,就可以看出人脑具有以下鲜明特征:1. 巨量并行性。

2022-10-17 13:55:51 623

原创 加法神经网络概念是什么,加法神经网络概念解释

我想这可能是你想要的神经网络吧!什么是神经网络:人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

2022-10-13 13:17:30 1112

原创 卷积神经网络的卷积运算,卷积神经网络里的卷积

上世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络,神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。卷积神经网络(Convolutional Neural Networks, CNN)是多层感知机(MLP)的变种。

2022-10-13 13:14:13 469

原创 卷积神经网络 图像处理,卷积神经网络特征提取

3、基于MATLAB 语言的网络训练与仿真建立并初始化网络% ================S1 = 24;在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。

2022-10-13 13:13:08 2182

原创 训练神经网络的详细步骤,神经网络训练样本个数

这个很简单啊,比如说是rbf网络,查看网络权值矩阵方法是:应该是运行完后,在命令窗口输入net.b{1}{1,1}net.b{2}{2,1}你可以在命令窗口输入typenewrbe,查看该函数里面的一些参数,把你需要的输出即可。newrb()可以用来设计一个近似径向基网络,用newrb()创建RBF网络是一个不断尝试的过程,在创建过程中,需要不断增加中间神经元的个数,直到网络的输出误差满足预先设定的值为止。③、最小训练速率 在经典的BP算法中,训练速率是由经验确定,训练速率越大,权重变化越大,收敛越快;

2022-10-13 13:11:43 481

原创 神经网络输入数据预处理,神经网络自然语言处理

因为多层神经网络被证明能够耦合任意非线性函数,通过一些配置能让网络去做以前需要人工参与的特征设计这些工作,然后配置合适的功能如classifier,regression,而现在神经网络可以通过配置layers的参数达到这些功能,整个输入到最终输出无需太多人工设置,从raw data 到最终输出指标经典机器学习方式是以人类的先验知识将raw数据预处理成feature,然后对feature进行分类。分类结果十分取决于feature的好坏。所以过去的机器学习专家将大部分时间花费在设计feature上。

2022-10-13 13:10:38 1249

原创 人工神经网络应用举例,人工神经网络应用领域

一.一些基本常识和原理 [什么叫神经网络?] 人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。

2022-10-13 13:09:32 186

原创 神经元网络算法的思想,神经网络算法应用案例

人工神经网络算法 “人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,F Rosenblatt、Widrow和J. J .Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。

2022-10-13 13:08:28 520

原创 神经网络如何实现分类,神经网络分类特点区别

6)计算W[S1][S0],b[S1];9))输出W1[S1][S0],b1[S1]。三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…

2022-10-11 12:08:24 537

原创 基于python的卷积神经网络,python卷积神经网络图像

border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。#Dense就是隐藏层。1表示输入的图片的通道,灰度图为1通道。

2022-10-11 12:05:33 485

原创 关于人工神经网络的论文,人工神经网络参考文献

文献综述的正文:它是文献综述的主要内容,包括研究历史(寻找研究问题的发展过程)、现状和基本内容(寻求认识的进步)、研究方法的分析(寻求研究方法的借鉴)、解决的问题和存在的问题,关注和阐述当前的影响和发展趋势,既能使研究者确定研究方向,又能帮助他人理解研究的出发点和切入点,即基于他人研究的创新。(2)再写该领域的研究背景和发展脉络。后半部分的评“述”与分析则是一篇“综述”质量高下的分界线,这需要融入作者自己理论水平、专业基础、分析问题、解决问题的能力,在对问题进行合情合理的剖析基础上,提出自己独特的见解。

2022-10-11 12:04:09 829

原创 神经网络常见的超参数,神经网络参数调整方法

现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。因为matlab工具箱为了在寻解不同阶段更智能的选择合适的步长,使用的是可变学习率,它会根据上一次解的调整对目标函数带来的效果来对学习率作调整,再根据学习率决定步长。

2022-10-11 12:03:02 2532

原创 神经网络的简介和特点,神经网络的简介和应用

脉冲神经网络 (SNN-Spiking Neuron Networks) 经常被誉为第三代人工神经网络。第一代神经网络是感知器,它是一个简单的神经元模型并且只能处理二进制数据。第二代神经网络包括比较广泛,包括应用较多的BP神经网络。但是从本质来讲,这些神经网络都是基于神经脉冲的频率进行编码( rate coded)。脉冲神经网络,其模拟神经元更加接近实际,除此之外,把时间信息的影响也考虑其中。

2022-10-10 14:30:42 629

原创 神经网络训练准确率曲线,神经网络拟合复杂曲线

bp神经网络是有一定缺陷的,比如容易陷入局部极小值,还有训练的结果依赖初始随机权值,这就好比你下一个山坡,如果最开始的方向走错了,那么你可能永远也到不了正确的山脚。可以说bp神经网络很难得到正确答案,也没有唯一解,有些时候只能是更多次地尝试、修改参数,这个更多依赖自己的经验,通俗点说就是“你觉得行了,那就是行了”,而不像1+1=2那样确切。如果有耐心,确定方法没问题,那么接下来需要做的就是不停地尝试、训练,得到你想要的结果。另外,我不知道你预测的是什么,是时间序列么?比如证券?这种预测,比较重要的就是输入参

2022-10-10 14:29:26 1419

原创 神经网络控制系统的应用,中枢神经信息网络系统

1943年,McCulloch与Pitts合作提出了第一个神经计算模型,简称MP模型。典型反馈网络——Hopfield网络美国物理学家Hopfield提出了离散型Hopfield神经网络和连续型Hopfield神经经网络,引入“计算能量函数”的概念,给出了网络稳定性判据,尤其是给出了Hopfield神经网络的电子电路实现,开拓了神经网络用于联系那个记忆和优化计算机的新途径。【资料来源】:中国自动化网CA800。谷歌人工智能写作项目:神经网络伪原创。

2022-10-10 14:27:59 533

原创 深度神经网络和人工神经网络区别

传统神经网络(这里作者主要指前向神经网络)中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

2022-10-05 11:16:21 1755

原创 人工神经元网络正向计算,神经网络实时校正软件

YOLO 是一种使用神经网络提供实时对象检测的算法。该算法因其速度和准确性而广受欢迎。它已在各种应用中用于检测交通信号、人员、停车计时器和动物。YOLO 是“You Only Look Once”一词的缩写。这是一种算法,可以(实时)检测和识别图片中的各种对象。YOLO 中的对象检测是作为回归问题完成的,并提供检测到的图像的类别概率。YOLO 算法采用卷积神经网络 (CNN) 实时检测物体。顾名思义,该算法只需要通过神经网络进行一次前向传播来检测物体。这意味着整个图像中的预测是在单个算法运行中完成的。CNN

2022-10-05 11:15:12 273

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除