538. Convert BST to Greater Tree

Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus sum of all keys greater than the original key in BST.

Input: The root of a Binary Search Tree like this:
              5
            /   \
           2     13

Output: The root of a Greater Tree like this:
             18
            /   \
          20     13

/**

 *Definition for a binary tree node.

 *struct TreeNode {

 *    int val;

 *    TreeNode *left;

 *    TreeNode *right;

 *     TreeNode(intx) : val(x), left(NULL), right(NULL) {}

 * };

 */

方法一:我的笨拙的方法

class Solution {

public:

   TreeNode* convertBST(TreeNode* root) {

       if(root==NULL)

        {

            return NULL;

        }

        int sum=sumBST(root);

       stack<TreeNode*>s;

       TreeNode* pcurr=root;

 

       while(!s.empty()||pcurr!=NULL)

       {

           while(pcurr!=NULL)

           {

                s.push(pcurr);

                pcurr=pcurr->left;

           }

           if(!s.empty())

           {

                pcurr=s.top();

                s.pop();

                sum=sum-(pcurr->val);

                pcurr->val+=sum;//+=,别把符号写错了。要不然很费劲的

                pcurr=pcurr->right;

           }

       }

       return root;

    }

    int sumBST(TreeNode* root)//先求出所有节点之和

    {

        if(root==NULL)

        {

            return 0;

        }

        return sumBST(root->left)+sumBST(root->right)+root->val;

    }

};

方法二:递归版本

中序遍历,采用先遍历右子树的方法,在遍历左子树。真他妈的巧妙,我的思维还一直停在固有思维上(先遍历左子树后遍历右子树),其实可以想象,当采用中序遍历时,若采用先遍历右子树后遍历左子树,则得到的序列是从大到小的序列。很方便计算出比当前节点大的节点值之和。

class Solution {

public:

   TreeNode* convertBST(TreeNode* root) {

       int sum=0;

       conver(root,sum);

       return root;

    }

    void conver(TreeNode* root,int &sum)

    {

        if(root==NULL)

        {

            return;

        }

        conver(root->right,sum);

        root->val+=sum;

        sum=root->val;

        conver(root->left,sum);

    }

};

方法三:优化版本:非递归

对root所指二叉树的节点指向有效。

class Solution {

public:

   TreeNode* convertBST(TreeNode* root) {

       if(root==NULL)

        {

            return NULL;

        }

        int sum=0;

       stack<TreeNode*>s;

       TreeNode* pcurr=root;

 

       while(!s.empty()||pcurr!=NULL)

       {

           while(pcurr!=NULL)

           {

                s.push(pcurr);

                pcurr=pcurr->right;//先处理右子树,后处理左子树

           }

           if(!s.empty())

           {

                pcurr=s.top();

                s.pop();

                pcurr->val+=sum;//+=,别把符号写错了。要不然很费劲的

               sum=pcurr->val;

                pcurr=pcurr->left;

           }

       }

       return root;

    }

};

结果:对中序遍历,理解更深了。

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值