Fun with AI
文章平均质量分 92
深度学习领域的论文复现。
suredied
这个作者很懒,什么都没留下…
展开
-
对标签噪声鲁棒的广义交叉熵损失 (Generalized Cross Entropy)
在人工智能算法的实际应用场景中,不可避免地会出现训练数据误标现象,即训练数据集上存在标签噪声。这会降低所训模型的泛化能力。尤其是对于深度神经网络这种描述能力极强的模型,标签噪声对推理精度的影响甚或是灾难性的。论文证实了一个简单的两层网络就能记住所有随机分配的标签。本篇博文将介绍一种对标签噪声鲁棒的损失函数,即General Cross Entropy (GCE)。这种损失函数在2018年的NIPS会议论文中被提出,其集成了Mean Absolute Error (MAE)损失函数的噪声鲁棒性,以及传统的C原创 2021-02-01 20:11:01 · 5908 阅读 · 0 评论 -
学习速率搜索
学习速率是训练DNN模型的一个关键参数。过大的学习速率设置会导致训练过程不收敛,过小的学习速率会导致收敛速度缓慢。本篇博客将介绍一种现有论文中的学习速率的选取方法。这种方法作为一种最佳实践,也被Fast AI库所采纳。博主的初衷是使用Fast AI所提供的API,便捷地实现这种搜索方法。但在实践过程中却发现Fast AI已经从1.0版本升级到了2.0版本,其很多功能的实现方式发生了变化。之前博主基于Fast AI 1.0所探讨的一些扩展技能都不再适用。有鉴于此,为避免Fast AI版本变更导致的技能点失效原创 2021-01-30 17:23:30 · 689 阅读 · 0 评论