Ribbon负载均衡

Ribbon负载均衡

img

Ribbon

Eureka帮我们集成了负载均衡组件:Ribbon,简单修改代码即可使用。

什么是Ribbon:客户端负载均衡组件

1525619257397

开启负载均衡

1、Eureka中已经集成了Ribbon,所以我们无需引入新的依赖,直接修改代码。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2、spring-consumer的引导类,在RestTemplate的配置方法上添加@LoadBalanced注解

@Bean
@LoadBalanced  //不添加这个注解,不能直接用服务名访问
public RestTemplate getRestTemplate(RestTemplateBuilder builder){
    return builder.build();
}

3、修改调用方式,不再手动获取ip和端口,而是直接通过服务名称调用:

@RestController
public class UserController {

    @Autowired
    private RestTemplate restTemplate;
    
    @RequestMapping(value = "/consumerLoadBalanced/{id}")
    public String consumerLoadBalanced(@PathVariable String id){
        String url = "http://spring-provider/provider/" + id;
        String consumer = restTemplate.getForObject(url, String.class);
        return "LoadBalanced restTemplate consumer " + consumer;
    }

}

4、运行结果:

第一次调用结果

image-20221110142147158

第二调用结果

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Ribbon 的超时和超时重试

Ribbon 是有超时设置,以及超时之后的重试功能的。但是,在 RestTemplate 和 Ribbon 结合的方案中,Ribbon 的超时设置和重试设置的配置方式一直在变动,因此有很多『配置无效』的现象,十分诡异。

考虑到我们在后续的项目中不会使用 RestTemplate 和 Ribbon 整合,而是使用 OpenFeign ,因此,这里就不展开解释了。

Ribbon 的饥饿加载

默认情况下,服务消费方调用服务提供方接口的时候,第一次请求会慢一些,甚至会超时,而之后的调用就没有问题了。

这是因为 Ribbon 进行客户端负载均衡的 Client 并不是在服务启动的时候就初始化好的,而是在调用的时候才会去创建相应的 Client,所以第一次调用的耗时不仅仅包含发送HTTP请求的时间,还包含了创建 RibbonClient 的时间,这样一来如果创建时间速度较慢,同时设置的超时时间又比较短的话,很容易就会出现上面所描述的现象。

你可以通过启用 Ribbon 的饥饿加载(即立即加载)模式,并指定在项目启动时就要加载的服务:

ribbon:
  eager-load:
    enabled: true   # 开启饥饿加载
    clients: spring-provider, xxx        # (服务名)需要饥饿加载的服务

负载均衡策略

1.轮询策略

轮询策略:RoundRobinRule,按照一定的顺序依次调用服务实例。比如一共有 3 个服务,第一次调用服务 1,第二次调用服务 2,第三次调用服务 3,依次类推。此策略的配置设置如下:

spring-provider: # nacos中的服务id  
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RoundRobinRule #设置负载均衡

格式是:{服务名称}.ribbon.NFLoadBalancerRuleClassName,值就是IRule的实现类。

2.权重策略

权重策略:WeightedResponseTimeRule,根据每个服务提供者的响应时间分配一个权重,响应时间越长,权重越小,被选中的可能性也就越低。它的实现原理是,刚开始使用轮询策略并开启一个计时器,每一段时间收集一次所有服务提供者的平均响应时间,然后再给每个服务提供者附上一个权重,权重越高被选中的概率也越大。此策略的配置设置如下:

spring-provider: # nacos中的服务id
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.WeightedResponseTimeRule

3.随机策略

随机策略:RandomRule,从服务提供者的列表中随机选择一个服务实例。此策略的配置设置如下:

spring-provider: # nacos中的服务id
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule

4.最小连接数策略

最小连接数策略:BestAvailableRule,也叫最小并发数策略,它是遍历服务提供者列表,选取连接数最小的⼀个服务实例。如果有相同的最小连接数,那么会调用轮询策略进行选取。此策略的配置设置如下:

spring-provider: # nacos中的服务id
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.BestAvailableRule #设置负载均衡

5.重试策略

重试策略:RetryRule,按照轮询策略来获取服务,如果获取的服务实例为 null 或已经失效,则在指定的时间之内不断地进行重试来获取服务,如果超过指定时间依然没获取到服务实例则返回 null。此策略的配置设置如下:

ribbon:
  ConnectTimeout: 2000 # 请求连接的超时时间
  ReadTimeout: 5000 # 请求处理的超时时间
spring-provider: # nacos 中的服务 id
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule #设置负载均衡

6.可用性敏感策略

可用敏感性策略:AvailabilityFilteringRule,先过滤掉非健康的服务实例,然后再选择连接数较小的服务实例。此策略的配置设置如下:

spring-provider: # nacos中的服务id
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.AvailabilityFilteringRule

7.区域敏感策略

区域敏感策略:ZoneAvoidanceRule,根据服务所在区域(zone)的性能和服务的可用性来选择服务实例,在没有区域的环境下,该策略和轮询策略类似。此策略的配置设置如下:

spring-provider: # nacos中的服务id
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.ZoneAvoidanceRule

Ribbon与Nginx的区别

Nginx是基于服务端的负载均衡,客户端所有请求统一交给 nginx,由 nginx 进行实现负载均衡请求转发,Nginx保持服务清单的同时,也负责负载均衡算法

Ribbon是从 eureka 注册中心服务器端上获取服务注册信息列表,缓存到本地,然后在本地实现轮询负载均衡策略,Ribbon不负责出来服务清单,

img

应用场景的区别:

1、Nginx适合于服务器端实现负载均衡比如 Tomcat ,Ribbon适合与在微服务中RPC远程调用实现本地服务负载均衡,比如 Dubbo、SpringCloud 中都是采用本地负载均衡。

spring cloud的Netflix中提供了两个组件实现软负载均衡调用:ribbon和feign。

2、Ribbon

是一个基于 HTTP 和 TCP 客户端的负载均衡器,可以在客户端配置 ribbonServerList(服务端列表),然后轮询请求以实现均衡负载。

3、springcloud的ribbon和nginx有什么区别?哪个性能好?
nginx性能好,但ribbon可以剔除不健康节点,nginx剔除节点比较复杂。ribbon还可以配合熔断器一起工作;

ribbon是客户端负载均衡,nginx是服务端负载均衡。客户端负载均衡,所有客户端节点都维护自己要访问的服务端清单。服务端负载均衡的软件模块会维护一个可用的服务清单;

ribbon 是一个客户端负载均衡器,可以简单的理解成类似于 nginx的负载均衡模块的功能。

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖成范德彪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值