《算法笔记》9.4小节 9.5小节——数据结构专题(2)->二叉查找树(BST)->平衡二叉树(AVL)

二叉查找树(BST)

问题 A: 二叉排序树
问题描述:输入一系列整数,建立二叉排序数,并进行前序,中序,后序遍历。

  • 输入
输入第一行包括一个整数n(1<=n<=100)。接下来的一行包括n个整数。
  • 输出
可能有多组测试数据,对于每组数据,将题目所给数据建立一个二叉排序树,并对二叉排序树进行前序、中序和后序遍历。每种遍历结果输出一行。每行最后一个数据之后有一个空格。
  • 样例输入
1
2 
2
8 15 
4
21 10 5 39 
  • 样例输出
2 
2 
2 
8 15 
8 15 
15 8 
21 10 5 39 
5 10 21 39 
5 10 39 21 

这里注意insert的时候要讨论三种情况,千万不能忘记=data的情况

if (data == root->data) return;
#define _CRT_SECURE_NO_WARNINGS 1
#include <cstdio>
using namespace std;
int n;
struct node {
	int data;
	node* left, * right;
};
void insert(node* &root, int data)
{
	if (root == NULL)
	{
		root = new node;
		root->data = data;
		root->left = root->right = NULL;
		return;
	}
	if (data == root->data) return;
	else if (data < root->data) insert(root->left, data);
	else insert(root->right, data);
}
void preorder(node* root)
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		printf("%d ", root->data);
		preorder(root->left);
		preorder(root->right);
	}
	
}
void inorder(node* root)
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		inorder(root->left);
		printf("%d ", root->data);
		inorder(root->right);
	}
}
void postorder(node* root)
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		postorder(root->left);
		postorder(root->right);
		printf("%d ", root->data);
	}
}
int main()
{	
	int i;
	int data;
	while (scanf("%d", &n) != EOF)
	{
		//初始化
		node* root = NULL;
		for (i = 0; i < n; i++)
		{
			scanf("%d", &data);
			insert(root, data);
		}
		//遍历
		preorder(root);
		printf("\n");
		inorder(root);
		printf("\n");
		postorder(root);
		printf("\n");
	}
	return 0;
}

问题 B: 二叉搜索树
问题描述:判断两序列是否为同一二叉搜索树序列

  • 输入
开始一个数n,(1<=n<=20) 表示有n个需要判断,n= 0 的时候输入结束。
接下去一行是一个序列,序列长度小于10,包含(0~9)的数字,没有重复数字,根据这个序列可以构造出一颗二叉搜索树。
接下去的n行有n个序列,每个序列格式跟第一个序列一样,请判断这两个序列是否能组成同一颗二叉搜索树。
  • 输出
如果序列相同则输出YES,否则输出NO
  • 样例输入
6
45021
12045
54120
45021
45012
21054
50412
0
  • 样例输出
NO
NO
YES
NO
NO
NO

相同的二叉搜索树前序遍历也是相同的
注意每次都要初始化

#define _CRT_SECURE_NO_WARNINGS 1
#include <cstdio>
#include<cstring>
#include<vector>
using namespace std;
int n;
struct node {
	int data;
	node* left, * right;
};
vector<int> pre1, pre2;
void insert(node* &root, int data)
{
	if (root == NULL)
	{
		root = new node;
		root->data = data;
		root->left = root->right = NULL;
		return;
	}
	if (data == root->data) return;
	else if (data < root->data) insert(root->left, data);
	else insert(root->right, data);
}
//求前序遍历的序列
void preorder(node* root,vector<int>&vi)
{
	if (root == NULL)
	{
		return;
	}
	else
	{
		vi.push_back(root->data);
		preorder(root->left,vi);
		preorder(root->right,vi);
	}	
}
int main()
{	
	int i;
	char data[10];
	int temp;
	int j;
	while (scanf("%d", &n) != EOF)
	{
		if (n == 0)
			break;
		//初始化
		node* root = NULL;
		scanf("%s",data);
		for(i=0;i<strlen(data);i++)
		{
			temp = data[i] - '0';
			insert(root, temp);
		}	
		//遍历
		pre1.clear();
		preorder(root,pre1);
		for (j = 0; j < n; j++)
		{
			root = NULL;
			scanf("%s", data);
			for (i = 0; i < strlen(data); i++)
			{
				temp = data[i] - '0';
				insert(root, temp);
			}
			pre2.clear();
			preorder(root, pre2);
			if (pre1 == pre2)
				printf("YES\n");
			else
				printf("NO\n");
		}		
	}
	return 0;
}

平衡二叉树(AVL)

重点看平衡二叉树的插入操作:
左旋LR,右旋RR,理解会用即可
问题 A: 算法9-9~9-12:平衡二叉树的基本操作
问题描述:在本题中,读入一串整数,首先利用这些整数构造一棵平衡二叉树。另外给定多次查询,利用构造出的平衡二叉树,判断每一次查询是否成功。

  • 输入
输入的第一行包含2个正整数n和k,分别表示共有n个整数和k次查询。其中n不超过500,k同样不超过500。
第二行包含n个用空格隔开的正整数,表示n个整数。
第三行包含k个用空格隔开的正整数,表示k次查询的目标。
  • 输出
只有1行,包含k个整数,分别表示每一次的查询结果。如果在查询中找到了对应的整数,则输出1,否则输出0。
请在每个整数后输出一个空格,并请注意行尾输出换行。
  • 样例输入
8 3
1 3 5 7 8 9 10 15
9 2 5
  • 样例输出
1 0 1 

斯国一!

#define _CRT_SECURE_NO_WARNINGS 1
#include <cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 510;
int dat[maxn];
struct node {
	int v,height;
	node* lchild, * rchild;
};
node* newNode(int v)
{
	node* Node = new node;
	Node->v = v;
	Node -> height = 1;
	Node->lchild = NULL;
	Node->rchild = NULL;
	return Node;
}
int getHight(node* root)
{
	if (root == NULL) return 0;
	else return root->height;
}
int getBalanceFactor(node* root)
{
	return getHight(root->lchild)- getHight(root->rchild);
}
void updateHeight(node* root)
{
	root->height = max(getHight(root->lchild), getHight(root->rchild))+1;
}
void search(node* root, int x)
{
	if (root == NULL)
	{
		printf("0 ");
		return;
	}
		
	if (x == root->v)
	{
		printf("1 ");
		return;
	}
	else if (x < root->v)
		search(root->lchild,x);
	else
		search(root->rchild, x);
}
void L(node* &root)
{
	node* temp = root->rchild;
	root->rchild = temp->lchild;
	temp->lchild = root;
	updateHeight(root);
	updateHeight(temp);
	root = temp;
}
void R(node*& root)
{
	node* temp = root->lchild;
	root->lchild = temp->rchild;
	temp->rchild = root;
	updateHeight(root);
	updateHeight(temp);
	root = temp;
}
void insert(node* &root, int v)
{
	if (root == NULL)
	{
		root = newNode(v);
		return;
	}
	if (v < root->v)
	{
		insert(root->lchild, v);
		updateHeight(root);
		if (getBalanceFactor(root) == 2)
		{
			if (getBalanceFactor(root->lchild) == 1) R(root);
			else if (getBalanceFactor(root->lchild) == -1) L(root->lchild), R(root);
		}
	
	}
	else
	{
		insert(root->rchild,v);
		updateHeight(root);
		if (getBalanceFactor(root) == -2)
		{
			if (getBalanceFactor(root->rchild) == -1) L(root);
			else if (getBalanceFactor(root->rchild) == 1) R(root->rchild), L(root);
		}
	}
}
node* Create(int data[], int n)
{
	node* root = NULL;
	for (int i = 0; i < n; i++)
	{
		insert(root, data[i]);
	}
	return root;
}
int main()
{	
	int n, i,k;
	int temp;
	node* root;
	root = NULL;
	scanf("%d %d", &n,&k);
	for (i = 0; i < n; i++)
	{
		scanf("%d",&dat[i]);

	}
	root=Create(dat, n);
	for (i = 0; i < k; i++)
	{
		scanf("%d",&temp);
		search(root,temp);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值