二叉查找树(BST)
问题 A: 二叉排序树
问题描述:输入一系列整数,建立二叉排序数,并进行前序,中序,后序遍历。
- 输入
输入第一行包括一个整数n(1<=n<=100)。接下来的一行包括n个整数。
- 输出
可能有多组测试数据,对于每组数据,将题目所给数据建立一个二叉排序树,并对二叉排序树进行前序、中序和后序遍历。每种遍历结果输出一行。每行最后一个数据之后有一个空格。
- 样例输入
1
2
2
8 15
4
21 10 5 39
- 样例输出
2
2
2
8 15
8 15
15 8
21 10 5 39
5 10 21 39
5 10 39 21
这里注意insert的时候要讨论三种情况,千万不能忘记=data的情况
if (data == root->data) return;
#define _CRT_SECURE_NO_WARNINGS 1
#include <cstdio>
using namespace std;
int n;
struct node {
int data;
node* left, * right;
};
void insert(node* &root, int data)
{
if (root == NULL)
{
root = new node;
root->data = data;
root->left = root->right = NULL;
return;
}
if (data == root->data) return;
else if (data < root->data) insert(root->left, data);
else insert(root->right, data);
}
void preorder(node* root)
{
if (root == NULL)
{
return;
}
else
{
printf("%d ", root->data);
preorder(root->left);
preorder(root->right);
}
}
void inorder(node* root)
{
if (root == NULL)
{
return;
}
else
{
inorder(root->left);
printf("%d ", root->data);
inorder(root->right);
}
}
void postorder(node* root)
{
if (root == NULL)
{
return;
}
else
{
postorder(root->left);
postorder(root->right);
printf("%d ", root->data);
}
}
int main()
{
int i;
int data;
while (scanf("%d", &n) != EOF)
{
//初始化
node* root = NULL;
for (i = 0; i < n; i++)
{
scanf("%d", &data);
insert(root, data);
}
//遍历
preorder(root);
printf("\n");
inorder(root);
printf("\n");
postorder(root);
printf("\n");
}
return 0;
}
问题 B: 二叉搜索树
问题描述:判断两序列是否为同一二叉搜索树序列
- 输入
开始一个数n,(1<=n<=20) 表示有n个需要判断,n= 0 的时候输入结束。
接下去一行是一个序列,序列长度小于10,包含(0~9)的数字,没有重复数字,根据这个序列可以构造出一颗二叉搜索树。
接下去的n行有n个序列,每个序列格式跟第一个序列一样,请判断这两个序列是否能组成同一颗二叉搜索树。
- 输出
如果序列相同则输出YES,否则输出NO
- 样例输入
6
45021
12045
54120
45021
45012
21054
50412
0
- 样例输出
NO
NO
YES
NO
NO
NO
相同的二叉搜索树前序遍历也是相同的
注意每次都要初始化
#define _CRT_SECURE_NO_WARNINGS 1
#include <cstdio>
#include<cstring>
#include<vector>
using namespace std;
int n;
struct node {
int data;
node* left, * right;
};
vector<int> pre1, pre2;
void insert(node* &root, int data)
{
if (root == NULL)
{
root = new node;
root->data = data;
root->left = root->right = NULL;
return;
}
if (data == root->data) return;
else if (data < root->data) insert(root->left, data);
else insert(root->right, data);
}
//求前序遍历的序列
void preorder(node* root,vector<int>&vi)
{
if (root == NULL)
{
return;
}
else
{
vi.push_back(root->data);
preorder(root->left,vi);
preorder(root->right,vi);
}
}
int main()
{
int i;
char data[10];
int temp;
int j;
while (scanf("%d", &n) != EOF)
{
if (n == 0)
break;
//初始化
node* root = NULL;
scanf("%s",data);
for(i=0;i<strlen(data);i++)
{
temp = data[i] - '0';
insert(root, temp);
}
//遍历
pre1.clear();
preorder(root,pre1);
for (j = 0; j < n; j++)
{
root = NULL;
scanf("%s", data);
for (i = 0; i < strlen(data); i++)
{
temp = data[i] - '0';
insert(root, temp);
}
pre2.clear();
preorder(root, pre2);
if (pre1 == pre2)
printf("YES\n");
else
printf("NO\n");
}
}
return 0;
}
平衡二叉树(AVL)
重点看平衡二叉树的插入操作:
左旋LR,右旋RR,理解会用即可
问题 A: 算法9-9~9-12:平衡二叉树的基本操作
问题描述:在本题中,读入一串整数,首先利用这些整数构造一棵平衡二叉树。另外给定多次查询,利用构造出的平衡二叉树,判断每一次查询是否成功。
- 输入
输入的第一行包含2个正整数n和k,分别表示共有n个整数和k次查询。其中n不超过500,k同样不超过500。
第二行包含n个用空格隔开的正整数,表示n个整数。
第三行包含k个用空格隔开的正整数,表示k次查询的目标。
- 输出
只有1行,包含k个整数,分别表示每一次的查询结果。如果在查询中找到了对应的整数,则输出1,否则输出0。
请在每个整数后输出一个空格,并请注意行尾输出换行。
- 样例输入
8 3
1 3 5 7 8 9 10 15
9 2 5
- 样例输出
1 0 1
斯国一!
#define _CRT_SECURE_NO_WARNINGS 1
#include <cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 510;
int dat[maxn];
struct node {
int v,height;
node* lchild, * rchild;
};
node* newNode(int v)
{
node* Node = new node;
Node->v = v;
Node -> height = 1;
Node->lchild = NULL;
Node->rchild = NULL;
return Node;
}
int getHight(node* root)
{
if (root == NULL) return 0;
else return root->height;
}
int getBalanceFactor(node* root)
{
return getHight(root->lchild)- getHight(root->rchild);
}
void updateHeight(node* root)
{
root->height = max(getHight(root->lchild), getHight(root->rchild))+1;
}
void search(node* root, int x)
{
if (root == NULL)
{
printf("0 ");
return;
}
if (x == root->v)
{
printf("1 ");
return;
}
else if (x < root->v)
search(root->lchild,x);
else
search(root->rchild, x);
}
void L(node* &root)
{
node* temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
void R(node*& root)
{
node* temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
updateHeight(root);
updateHeight(temp);
root = temp;
}
void insert(node* &root, int v)
{
if (root == NULL)
{
root = newNode(v);
return;
}
if (v < root->v)
{
insert(root->lchild, v);
updateHeight(root);
if (getBalanceFactor(root) == 2)
{
if (getBalanceFactor(root->lchild) == 1) R(root);
else if (getBalanceFactor(root->lchild) == -1) L(root->lchild), R(root);
}
}
else
{
insert(root->rchild,v);
updateHeight(root);
if (getBalanceFactor(root) == -2)
{
if (getBalanceFactor(root->rchild) == -1) L(root);
else if (getBalanceFactor(root->rchild) == 1) R(root->rchild), L(root);
}
}
}
node* Create(int data[], int n)
{
node* root = NULL;
for (int i = 0; i < n; i++)
{
insert(root, data[i]);
}
return root;
}
int main()
{
int n, i,k;
int temp;
node* root;
root = NULL;
scanf("%d %d", &n,&k);
for (i = 0; i < n; i++)
{
scanf("%d",&dat[i]);
}
root=Create(dat, n);
for (i = 0; i < k; i++)
{
scanf("%d",&temp);
search(root,temp);
}
return 0;
}