特殊排列
Description
有N个元素,编号1.2…N,每一对元素之间的大小关系是确定的,关系具有反对称性,但不具有传递性。
注意:不存在两个元素大小相等的情况。
也就是说,元素的大小关系是N个点与N*(N-1)/2条有向边构成的任意有向图。
然而,这是一道交互式试题,这些关系不能一次性得知,你必须通过不超过10000次提问来获取信息,每次提问只能了解某两个元素之间的关系。
现在请你把这N个元素排成一行,使得每个元素都小于右边与它相邻的元素。
你可以通过我们预设的bool函数compare来获得两个元素之间的大小关系。
例如,编号为a和b的两个元素,如果元素a小于元素b,则compare(a,b)返回true,否则返回false。
将N个元素排好序后,把他们的编号以数组的形式输出,如果答案不唯一,则输出任意一个均可。
数据范围
1≤N≤1000
输入样例
[[0, 1, 0], [0, 0, 0], [1, 1, 0]]
输出样例
[3, 1, 2]
思路:
我们假设已经排好K-1
个元素的位置, 如果我们能确认第k
个的位置,那这题就解开一半了。这第k
个元素如果直接一个个查询的话,那么总共需n^2
次查询显然当N为1000时会compare次数会超过10000. 所以我们可以采用二分去查第K
个元素的插入位置。用二分检索,每次可以删掉一半元素,所以时间复杂度是 O(logn)
我们已知元素序列不具备传递性。为什么还可以用二分查找呢我们通常认为,二分是需要满足单调性的,但在这题里我们并不需要使整个序列满足单调性,只需要利用二分快速找到一个满足条件的位置即可。因此当compare(res[mid],i) == True
时就在右边找,否则就在左边找就可定位到一个合法的位置。
另外,我们还可使用归并排序AC此题。
不具备传递性则 :a < b, b < c 不能推出 a < c
code:
// Forward declaration of compare API.
// bool compare(int a, int b);
// return bool means whether a is less than b.
class Solution {
public:
vector<int> specialSort(int N) {
vector<int> res;
res.push_back(1);
for(int i = 2;i <= N;i++){
//二分插入点
int l = 0,r = res.size() - 1;
while(l <= r){
int mid = l + r >> 1;
if(compare(res[mid],i)) l = mid + 1;
else r = mid - 1;
}
res.push_back(i);
for(int j = res.size() - 2;j > r;j--) swap(res[j],res[j + 1]);
}
return res;
}
};