一、什么是索引?
索引用来快速地寻找那些具有特定值的记录,所有mysql索引都以b-树的形式保存。如果没有索引,执行查询时mysql必须从第一个记录开始扫描整个表的所有记录,直至找到符合需求的记录。表里面的记录数量越多,这个操作的代价就越高。如果作为搜索条件的列上已创建了索引,mysql无需扫描所有记录即可迅速得到目标记录所在的位置。如果表有1000个记录,通过索引查找记录至少要比顺序扫描记录快100倍。
假设我们创建了一个名为people的表:
create table people ( peopleid smallint not null, name char(50) not null );
然后,我们完全随机把1000个不同name值插入到people表。下图显示了people表所在数据文件的一小部分:
能看到,在数据文件中name列没有所有明确的次序。如果我们创建了name列的索引,mysql将在索引中排序name列:
对于索引中的每一项,mysql在内部为他保存一个数据文件中实际记录所在位置的“指针”。因此,如果我们要查找name等于“mike”记录的peopleid(sql命令为“select peopleid from people where name=mike;”),mysql能够在name的索引中查找“mike”值,然后直接转到数据文件中相应的行,准确地返回该行的peopleid(999)。在这个过程中,mysql只需处理一个行就能返回结果。如果没有“name”列的索引,mysql要扫描数据文件中的所有记录,即1000个记录!显然,需要mysql处理的记录数量越少,则他完成任务的速度就越快。
二、索引的类型
mysql提供多种索引类型供选择:
普通索引
这是最基本的索引类型,而且他没有唯一性之类的限制。普通索引能通过以下几种方式创建:
创建索引,例如create index <索引的名字> on tablename (列的列表);
修改表,例如alter table tablename add index [索引的名字] (列的列表);
创建表的时候指定索引,例如create table tablename ( [...], index [索引的名字] (列的列表) );
唯一性索引
这种索引和前面的“普通索引”基本相同,但有一个差别:索引列的所有值都只能出现一次,即必须唯一。唯一性索引能用以下几种方式创建:
创建索引,例如create unique index <索引的名字> on tablename (列的列表);
修改表,例如alter table tablename add unique [索引的名字] (列的列表);
创建表的时候指定索引,例如create table tablename ( [...], unique [索引的名字] (列的列表) );
主键
主键是一种唯一性索引,但他必须指定为“primary key”。如果你原来用过auto_increment类型的列,你可能已熟悉主键之类的概念了。主键一般在创建表的时候指定,例如“create table tablename ( [...], primary key (列的列表) ); ”。不过,我们也能通过修改表的方式加入主键,例如“alter table tablename add primary key (列的列表); ”。每个表只能有一个主键。
全文索引
mysql从3.23.23版开始支持全文索引和全文检索。在mysql中,全文索引的索引类型为fulltext。全文索引能在varchar或text类型的列上创建。他能通过create table命令创建,也能通过alter table或create index命令创建。对于大规模的数据集,通过alter table(或create index)命令创建全文索引要比把记录插入带有全文索引的空表更快。本文下面的讨论不再涉及全文索引,要了解更多信息,请参见mysql documentation。
三、单列索引和多列索引
索引能是单列索引,也能是多列索引。下面我们通过具体的例子来说明这两种索引的差别。假设有这样一个people表:
create table people ( peopleid smallint not null auto_increment, firstname char(50) not null, lastname char(50) not null, age smallint not null, townid smallint not null, primary key (peopleid) );
下面是我们插入到这个people表的数据:
这个数据片段中有四个名字为“mikes”的人(其中两个姓sullivans,两个姓mcconnells),有两个年龄为17岁的人,更有一个名字和众不同的joe smith。
这个表的主要用途是根据指定的用户姓、名及年龄返回相应的peopleid。例如,我们可能需要查找姓名为mike sullivan、年龄17岁用户的peopleid(sql命令为select peopleid from people where firstname=mike and lastname=sullivan and age=17;)。由于我们不想让mysql每次执行查询就去扫描整个表,这里需要考虑运用索引。
首先,我们能考虑在单个列上创建索引,比如firstname、lastname或age列。如果我们创建firstname列的索引(alter table people add index firstname (firstname);),mysql将通过这个索引迅速把搜索范围限制到那些firstname=mike的记录,然后再在这个“中间结果集”上进行其他条件的搜索:他首先排除那些lastname不等于“sullivan”的记录,然后排除那些age不等于17的记录。当记录满足所有搜索条件之后,mysql就返回最终的搜索结果。
由于建立了firstname列的索引,和执行表的完全扫描相比,mysql的效率提高了非常多,但我们需求mysql扫描的记录数量仍旧远远超过了实际所需要的。虽然我们能删除firstname列上的索引,再创建lastname或age列的索引,但总地看来,不论在哪个列上创建索引搜索效率仍旧相似。
为了提高搜索效率,我们需要考虑运用多列索引。如果为firstname、lastname和age这三个列创建一个多列索引,mysql只需一次检索就能够找出正确的结果!下面是创建这个多列索引的sql命令:
alter table people add index fname_lname_age (firstname,lastname,age);
由于索引文件以b-树格式保存,mysql能够即时转到合适的firstname,然后再转到合适的lastname,最后转到合适的age。在没有扫描数据文件所有一个记录的情况下,mysql就正确地找出了搜索的目标记录!
那么,如果在firstname、lastname、age这三个列上分别创建单列索引,效果是否和创建一个firstname、lastname、age的多列索引相同呢?答案是否定的,两者完全不同。当我们执行查询的时候,mysql只能使用一个索引。如果你有三个单列的索引,mysql会试图选择一个限制最严格的索引。不过,即使是限制最严格的单列索引,他的限制能力也肯定远远低于firstname、lastname、age这三个列上的多列索引。
四、最左前缀
多列索引更有另外一个好处,他通过称为最左前缀(leftmost prefixing)的概念体现出来。继续考虑前面的例子,目前我们有一个firstname、lastname、age列上的多列索引,我们称这个索引为fname_lname_age。当搜索条件是以下各种列的组合时,mysql将使用fname_lname_age索引:
firstname,lastname,age
firstname,lastname
firstname
从另一方面理解,他相当于我们创建了(firstname,lastname,age)、(firstname,lastname)及(firstname)这些列组合上的索引。下面这些查询都能够使用这个fname_lname_age索引:
select peopleid from people where firstname=mike and lastname=sullivan and age=17; select peopleid from people where firstname=mike and lastname=sullivan; select peopleid from people where firstname=mike; the following queries cannot use the index at all: select peopleid from people where lastname=sullivan; select peopleid from people where age=17; select peopleid from people where lastname=sullivan and age=17;
五、选择索引列
在性能优化过程中,选择在哪些列上创建索引是最重要的步骤之一。能考虑使用索引的主要有两种类型的列:在where子句中出现的列,在join子句中出现的列。请看下面这个查询:
select age ## 不使用索引 from people where firstname=mike ## 考虑使用索引 and lastname=sullivan ## 考虑使用索引
这个查询和前面的查询略有不同,但仍属于简单查询。由于age是在select部分被引用,mysql不会用他来限制列选择操作。因此,对于这个查询来说,创建age列的索引没有什么必要。下面是个更复杂的例子:
select people.age, ##不使用索引 town.name ##不使用索引 from people left join town on people.townid=town.townid ##考虑使用索引 where firstname=mike ##考虑使用索引 and lastname=sullivan ##考虑使用索引
和前面的例子相同,由于firstname和lastname出目前where子句中,因此这两个列仍旧有创建索引的必要。除此之外,由于town表的townid列出目前join子句中,因此我们需要考虑创建该列的索引。
那么,我们是否能简单地认为应该索引where子句和join子句中出现的每一个列呢?差不多如此,但并不完全。我们还必须考虑到对列进行比较的操作符类型。mysql只有对以下操作符才使用索引:<,<=,=,>,>=,between,in,及某些时候的like。能在like操作中使用索引的情形是指另一个操作数不是以通配符(%或_)开头的情形。例如,“select peopleid from people where firstname like mich%;”这个查询将使用索引,但“select peopleid from people where firstname like %ike;”这个查询不会使用索引。
六、分析索引效率
目前我们已知道了一些怎么选择索引列的知识,但还无法判断哪一个最有效。mysql提供了一个内建的sql命令帮助我们完成这个任务,这就是explain命令。explain命令的一般语法是:explain <sql命令>。你能在mysql文件找到有关该命令的更多说明。下面是个例子:
explain select peopleid from people where firstname=mike and lastname=sullivan and age=17;
这个命令将返回下面这种分析结果:
table type possible_keys key key_len ref rows extra
people ref fname_lname_age fname_lname_age 102 const,const,const 1 where used
下面我们就来看看这个explain分析结果的含义。
table:这是表的名字。
type:连接操作的类型。下面是mysql文件关于ref连接类型的说明:
“对于每一种和另一个表中记录的组合,mysql将从当前的表读取所有带有匹配索引值的记录。如果连接操作只使用键的最左前缀,或如果键不是unique或primary key类型(换句话说,如果连接操作不能根据键值选择出唯一行),则mysql使用ref连接类型。如果连接操作所用的键只匹配少量的记录,则ref是一种好的连接类型。”
在本例中,由于索引不是unique类型,ref是我们能够得到的最佳连接类型。
如果explain显示连接类型是“all”,而且你并不想从表里面选择出大多数记录,那么mysql的操作效率将非常低,因为他要扫描整个表。你能加入更多的索引来解决这个问题。预知更多信息,请参见mysql的手册说明。
possible_keys:
可能能利用的索引的名字。这里的索引名字是创建索引时指定的索引昵称;如果索引没有昵称,则默认显示的是索引中第一个列的名字(在本例中,他是“firstname”)。默认索引名字的含义往往不是非常明显。
key:
他显示了mysql实际使用的索引的名字。如果他为空(或null),则mysql不使用索引。
key_len:
索引中被使用部分的长度,以字节计。在本例中,key_len是102,其中firstname占50字节,lastname占50字节,age占2字节。如果mysql只使用索引中的firstname部分,则key_len将是50。
ref:
他显示的是列的名字(或单词“const”),mysql将根据这些列来选择行。在本例中,mysql根据三个常量选择行。
rows:
mysql所认为的他在找到正确的结果之前必须扫描的记录数。显然,这里最最佳的数字就是1。
extra:
这里可能出现许多不同的选项,其中大多数将对查询产生负面影响。在本例中,mysql只是提醒我们他将用where子句限制搜索结果集。
七、索引的缺点
到目前为止,我们讨论的都是索引的好处。事实上,索引也是有缺点的。
首先,索引要占用磁盘空间。通常情况下,这个问题不是非常突出。不过,如果你创建每一种可能列组合的索引,索引文件体积的增长速度将远远超过数据文件。如果你有一个非常大的表,索引文件的大小可能达到操作系统允许的最大文件限制。
第二,对于需要写入数据的操作,比如delete、update及insert操作,索引会降低他们的速度。这是因为mysql不仅要把改动数据写入数据文件,而且他还要把这些改动写入索引文件。
【结束语】在大型数据库中,索引是提高速度的一个关键因素。不管表的结构是多么简单,一次500000行的表扫描操作无论怎么不会快。如果你的网站上也有这种大规模的表,那么你确实应该花些时间去分析能采用哪些索引,并考虑是否能改写查询以优化应用。要了解更多信息,请参见mysql manual。另外注意,本文假定你所使用的mysql是3.23版,部分查询不能在3.22版mysql上执行。
来自:http://hi.baidu.com/abcfxr/blog/item/5959a319828747b94bedbc29.html