算法训练营第十三天|226.翻转二叉树、101. 对称二叉树、 104.二叉树的最大深度、111.二叉树的最小深度

递归

递归三部曲:

  • 1.确定参数和返回值
  • 2.确定终止条件
  • 3.确定单层逻辑

226.翻转二叉树

题目

在这里插入图片描述

思路与解法

第一想法: 递归,对每个结点进行反转

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        cur = root
        if cur:
            tmp = cur.left
            cur.left = cur.right
            cur.right = tmp
            self.invertTree(cur.left)
            self.invertTree(cur.right)
        
        return root
        

101. 对称二叉树

题目

在这里插入图片描述

思路与解法

carl的讲解:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def isSymmetric(self, root: Optional[TreeNode]) -> bool:
        if not root:
            return True
        
        def compare(left, right) -> bool:
            
            if not ((left and right) or (not left and not right)):
                return False
            if not left and not right:
                return True
            elif left.val != right.val:
                return False

            if not compare(left.left, right.right):
                return False
            if not compare(left.right, right.left):
                return False

            return True
        return compare(root.left, root.right)

104.二叉树的最大深度

题目

在这里插入图片描述

思路与解法

第一思路: 可以用层序遍历,记录层数。递归的话就得想想了。不好描述,先写吧。
写了出来,在37/39个示例报超时。
在这里插入图片描述
发现超时的原因了,因为 16、17、18行的代码将get_depth(depth, node.left)get_depth(depth, node.right)各计算了两次。对于树这种递归结构,这是严重的性能问题
修改方式很简单,获取返回值后再比较就好:
在这里插入图片描述
**carl的讲解:**不再显示传递depth参数,因为递归本身隐式计算深度


class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        def get_depth(node: Optional[TreeNode]) -> int:
            if not node:
                return 0
            left_depth = get_depth(node.left)
            right_depth = get_depth(node.right)
            return 1 + max(left_depth, right_depth)
        
        return get_depth(root)

111.二叉树的最小深度

题目

在这里插入图片描述

思路与解法

第一想法: 就是简单的改前面的最大深度为最小深度。但是踩坑了,不是这么简单。
**carl的讲解:**因为最小深度的判别要比最大深度复杂。直接将max改成min是不行的,因为会把非叶子节点的值当作最小值返回。因为这个非叶子节点可能离根节点不愿,左边没节点但是右边有节点,这样他就可能得出的depth很小,但是他都不是叶子节点。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def minDepth(self, root: Optional[TreeNode]) -> int:
        return self.get_depth(root)
        
    def get_depth(self, node: Optional[TreeNode]) -> int:
        if not node:
            return 0
        
        left_depth = self.get_depth(node.left)
        right_depth = self.get_depth(node.right)
        if node.left is None and node.right is not None:
            return right_depth + 1
        if node.right is None and node.left is not None:
            return left_depth + 1
        return 1 + min(left_depth, right_depth) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值