七布隆咚锵
科研菜鸟
展开
-
Windows搭建深度学习环境-基于Sublime
“ 撇弃繁琐常规环境,搭建简易深度学习环境。”原创 2023-04-13 08:10:59 · 171 阅读 · 0 评论 -
【注意力机制篇】
注意力机制是一种通过动态调整模型对输入特征的关注程度来提升检测性能的技术。它最初在自然语言处理领域取得成功后,逐渐被引入到计算机视觉领域,并在目标检测任务中展现出显著的效果。原创 2025-04-08 12:30:23 · 24 阅读 · 0 评论 -
YOLOv10【损失函数篇】
YOLOv10 是 YOLO 系列的最新版本,继承了 YOLO 系列的核心思想:将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别标签进行预测。这种端到端的检测方式使得 YOLO 模型在速度和精度之间取得了良好的平衡。YOLOv10 在 YOLOv8 和 YOLOv9 的基础上进行了多方面的改进,包括网络架构的优化、损失函数的改进、数据增强策略的增强等,使其在各种基准数据集上均表现出卓越的性能。原创 2025-04-08 12:06:57 · 33 阅读 · 0 评论 -
YOLO目标检测数据增强、格式转换和数据集划分代码
YOLO目标检测数据增强、格式转换和数据集划分代码原创 2024-11-15 13:09:04 · 414 阅读 · 0 评论 -
统计数据集各个类别大中小目标数量(COCO数据集定义)
1.详细统计数据集各个类别大中小目标数量(目标尺寸按照COCO数据集定义);2.图像尺寸根据数据集中图像大小实时调整;3.只需要修改图像路径和标签路径,即可运行。原创 2025-04-07 15:17:35 · 68 阅读 · 0 评论 -
Papers with Code:科研与代码的完美结合,加速AI创新
Papers with Code:科研与代码的完美结合,加速AI创新原创 2025-03-05 14:35:35 · 167 阅读 · 0 评论