用c语言实现cos(x)与sin(x) 函数以及“绝对值函数”和“阶乘函数”

本文介绍了如何在C语言中自定义实现cos(x)和sin(x)函数,利用泰勒级数公式和负角三角函数定律。同时,为了完全脱离<math.h>库,还提供了自定义的绝对值和阶乘函数。虽然代码能给出精确的计算结果,但当输入弧度较大时,可能会因数据类型范围限制导致错误。为解决此问题,建议参考作者的另一篇文章学习如何进行‘归一化角度’处理。
摘要由CSDN通过智能技术生成

本人发现网上基本上都是教你如何直接使用C语言库函数来调用cos与sin,但由于很多限制,特别硬件编程,必须要自己写cos和sin函数。网上也有几篇自己实现了cos与sin函数的文章,但是都只有单独实现cos和单独实现sin,没有两个函数一起实现的文章,导致算法完全不一样,造成很多麻烦。 这里我来教大家如何一起实现cos(x)与sin(x) 函数

我这里运用了“泰勒级数公式”以及“负角的三角函数定律”:

可以看出sin(x)与cos(x)的不同主要在于sin多了一项阶乘和一项指数,使得sin是奇数的阶乘和次方,cos是偶数的阶乘和次方。并且sin的第一项是“x”,而cos的第一项是“1”。并且还要注意,如果输入是“复角”,sin的结果需要取复数。所以围绕这几个公式可以写出以下代码,代码中我为了完全脱离<math.h>的限制,我还自己实现了“绝对值函数”和“阶乘函数”:

#include <stdio.h>

//sin(-a)=-sin(a)
//cos(-a)=cos(a)

double pi=3.14159265359;


 double fabs_self(double x){
 if(x>=0){
   x=x;
 }else{
   x=-x;
 }
 retur
### 回答1: C语言中的sincos函数是数学库中常用的三角函数。它们的实现涉及到数学的近似计算和算法设计。下面是对C语言sincos函数的简要实现: 1. 对于sin函数实现,可以采用泰勒级数展开的方法。根据泰勒级数展开,sin函数可以表示为无穷级数:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...。根据此公式,可以通过循环迭代,并求和计算sin(x)的近似值。 ```c double sin(double x) { double result = 0; double term = x; int sign = 1; int denominator = 1; for (int i = 1; i <= 10; i += 2) { result += sign * term; sign *= -1; term *= x * x / (denominator * (denominator + 1)); denominator += 2; } return result; } ``` 2. 对于cos函数实现,可以利用sin函数的性质cos(x) = sin(pi/2 - x)。将x代入sin函数实现中即可得到cos函数的近似值。 ```c double cos(double x) { double pi_over_2 = 3.14159 / 2; return sin(pi_over_2 - x); } ``` 以上是简化的实现示例。实际的数学库函数中,sincos函数实现更加复杂,并且考虑了更多的近似算法和优化策略,以提高精度和计算效率。 ### 回答2: C语言中的数学库中定义了一些常用的数学函数,其中包括sin()和cos()函数。这两个函数分别用于计算给定角度的正弦值和余弦值。下面是关于这两个函数的简单实现方法: 1. 关于sin()函数实现方法: 正弦函数是周期性的,因此可以利用其性质进行近似计算。以下是一种常见的近似算法,称为泰勒级数展开: - 首先将角度转换为弧度,因为C语言中的三角函数需要以弧度为单位的输入。 - 使用泰勒级数展开公式,即sin(x) = x - (x^3)/3! + (x^5)/5! - ...,其中x为以弧度为单位的角度。 - 通过逐项相加,可以得到一个近似的sin()值。需要考虑泰勒级数的项数,可以根据所需精度进行调整。 2. 关于cos()函数实现方法: 余弦函数与正弦函数具有相关性,因此可以利用正弦函数实现来计算余弦函数: - 利用三角函数的关系式cos(x) = sin(x + π/2)。 - 在计算sin(x)之前,将角度转换为以弧度为单位,然后利用sin()函数进行计算。 - 最后将所得结果进行调整,即sin(x + π/2)。 但是需要注意,这里介绍的是一种简单的近似算法,并不是最有效的方法。在实际应用中,可以使用更加高效的算法和数学库函数来计算sin()和cos()函数的准确值。 ### 回答3: C语言中的sincos函数是用来计算给定角度的正弦和余弦值的数学函数。这些函数通常由数学库提供。下面是简化版的sincos函数实现思路。 首先,我们需要明确正弦和余弦函数的定义。正弦函数的定义是 sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...,其中!表示阶乘。余弦函数的定义是 cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ...。 在实现sincos函数时,我们可以考虑使用泰勒级数展开来逼近函数的值。泰勒级数展开将函数表示为一个无限级数,并且通过截断级数的一部分来近似原始函数的值。 下面是sin函数的简化实现: ```c double mySin(double x) { double sum = 0.0; double term = x; double sign = 1.0; int i; for(i = 1; i <= 10; ++i) { sum += term; sign *= -1.0; term = (term * x * x) / ((2*i) * (2*i+1)); } return sum; } ``` 在这个简化的实现中,我们使用了10项级数展开来计算sin函数的值。term变量迭代表示级数中的每一项,sum变量用于累加结果。通过不断迭代计算term和sum的值,我们可以得到最终的sin函数结果。 类似地,我们也可以实现cos函数: ```c double myCos(double x) { double sum = 0.0; double term = 1.0; double sign = 1.0; int i; for(i = 1; i <= 10; ++i) { sum += term; sign *= -1.0; term = (term * x * x) / ((2*i-1) * (2*i)); } return sum; } ``` 在这个简化的实现中,我们同样使用了10项级数展开来计算cos函数的值。 需要注意的是,这只是一种简化的实现方式,仅用于说明sincos函数实现原理。实际上,sincos函数是由数学库以更精确更高效的方式实现的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

suxiao6666

大佬求打赏,打赏越多知识越多

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值