17.立体匹配——匹配问题,好区域匹配 测验,窗口大小的影响,遮蔽(Occlusion),顺序约束_2

目录

匹配问题

好区域匹配 测验

 窗口大小的影响

遮蔽(Occlusion)

顺序约束


匹配问题

好了,我们继续研究这个对应问题。这里我们有两张照片(如图),这是Andrew Zisserman提供的。这是一条极线,这是水平的极线(如图)。

这里我们有两条扫描线,左边和右边的图像,还有一个强度分布图(Intensity profiles image)(如图1)。当然,它们看起来非常相似,因为在这个过程中应该有匹配。但是你知道,在这些配置文件的外观上有一些细微的差别,这里有一些噪音(如图2)也可能有一些含糊不清的地方你在这里匹配(如图3),那边可能会有挑战。

2

所以我们要更仔细地看一下(如图)。我们从左边拉出一扇窗户。我们要沿着极线滑动右边的窗口。

all right,让我们来看一个特定的窗口,我给你们看的这两个小条纹大概是窗户的高度。从左边的图像带,我们要抽出一个特定的点。好了,这是这个点(如图1),它的窗口与之相关。所以这意味着我们要拉出正确的带(如图2),这是一样的,这是极外带,如果你愿意,这是极外线,但与窗口高度有关。

1

2

我们要把这个窗口从左边滑到右边。如果我们这样做,我们做的是,比如说,互相关联,well,你会看到这个漂亮的高峰就在它应该匹配的地方(如图1)。所以窗口是在这两个黑色方块之间选择的(如图2),当然最好的匹配就在这两个黑色方块之间就像你期望的那样。

1 2

当然,问题是我们在一个漂亮的物体上加了一扇窗,实际上它看起来很像一个测量者的目标,有黑色的正方形和白色的正方形。

如果我们的窗口落在左边图像带的这个区域上面会发生什么?(如图1) 我的意思是,在张力上有一些变化,在这里很难看到。现在,如果我把它和右边的频带联系起来,会得到什么? 我看到的结果是这样的(如图2),okay?

1 2

当然,问题是,匹配在哪里?(如图1) 因为你会注意到,我有一个很好的强匹配在0.5以上。现在我得到了多个匹配,我知道这个匹配应该在有问号的地方。但是很难证明选择这一项优于其他任何一项。

1 2

那么我们如何解决这个问题呢? 当然,我们的问题是,窗户太小了,它没有捕捉到任何有意义的纹理。

好区域匹配 测验

那么你认为图像中的哪些区域适合立体匹配呢? 在每个适当窗口旁边标记复选框。让我们假设我们的立体设置有共面图像平面,并且极线是水平的。

你们已经看过其中两个了。那个有两个黑角的弯合在一起的(如图),是很强的匹配。 

1

我们看到墙上的这个区域基本上没什么特色(如图)。

同样,任何太亮或太暗的区域,信息都太少,无法提供有用的信息。

同样的,只有水平边缘穿过的区域,像这样(如图1),或者这个(如图2),在我们的立体设置中是没有用的。这是因为它们可以在极线上产生多次匹配。

 1 2

那么,哪些是好的呢? 任何带有明显拐角的东西都可以。垂直边界分明的地区也是可以的。如果你考虑穿过它们的极线,你会发现图像中没有其他区域与这条线匹配。

 窗口大小的影响

你可能会说,与其用小窗口,不如用大一点的窗口,所以问题是,我们应该如何选择窗口的大小,就像我们讨论缩放一样,没有简单的答案。

这是另一个立体对的例子,我只给你们看左边。所以如果我做一个滑动窗口立体,对于一个小窗口(如图1),well,我得到了树枝,树的分支,但是你会注意到所有这些,我认为技术词汇是扯淡,到处都是。这是一个视差图像,我的地面应该从近到远,不应该到处都是破烂的。

那么我该怎么做呢? 显然,由于噪声和其他原因,我需要将窗口放大以获得更健壮的匹配。如果我把窗户变大(如图),就会得到这个漂亮的地面图案,你可以看到它从近到远,后面的树更远(如图)。但是注意这里的树枝发生了什么(如图),好吧? 窗口太大了,当你把它放到一个分支上,它得到了分支和背景,它不知道该做什么。

1

2

正如我之前在这个内容上说的,大小总是一个问题,没有神奇的答案。

遮蔽(Occlusion)

我想谈谈我们在对应问题中讨论过的另外两个约束问题。我可以讲很多,给你们一些启发。

一个是唯一性,另一个是排序。

所以,唯一性意味着,对于左边的每一点,在右边的图像中匹配的不超过一个,反之亦然。同样的事情,好吧? 为什么说不能超过一个? 不应该正好是1吗? 嗯,不。问题是遮蔽(Occlusion)。这里有说明。假设我有一个绿色的条在一个红色的条前面(如图)。all right。

这是我的左图像,这是我的右图像(如图1),这些是在我的左图像中看到的像素,这些是在我的右图像中看到的像素(如图1)。

你会注意到,这里有两个红色的,然后两个绿色和一个红色,这里有一个红色,两个绿色和两个红色(如图)。

 

问题是这些像素被遮蔽(occluded)了(如图1)。我们所说的遮蔽,是指它们只可见,有时它们被称为半遮蔽(half occluded),因为这个像素只在左边的图像中可见(如图2)。这个像素只在右边的图像中可见(如图3)。在这里。okay。

 2

 

这发生在遮蔽边缘。如果我这样拿着它。所以,如果梅根,如果我让她闭上左眼,她的左眼看不到你的另一只左眼。但是如果我让她换另一个,她可以用右眼看到。这个指尖只能在她的一只眼睛里看到。所以,这就是为什么你不一定有唯一的解每个像素在每一帧中都是匹配的。

顺序约束

顺序约束(Ordering Constraint)基本上是说如果我在左边的图像中有a b c的像素,它们会以相同的顺序出现在右边的图像中。这就是当我观察一个固体表面时通常发生的情况。什么时候相反了呢? 嗯,当我不看一个固体表面的时候。这是SSS,非常酷。那么什么不是单一的固体表面呢? well, 一些事情。首先,我们不能是固体。现在,不是固体是什么意思? Well ,假设你有一个透明的表面上面有一些标记,okay? 假设这是一个透明曲面(如图1),all right? 我们可以看到这些点,all right?

1  2

Well,如果它们是透明的,它们会按这个顺序排列A B C(如图1),但是在这里,它们会是C A B,all right? 这是因为我们可以透过表面看到东西。这真的很奇怪,而且几乎从未发生过。

1  2

更经常发生的是有时被称为钢笔的东西,浮动笔,我忘了(如图)。不管它叫什么。基本上,如果我有一个狭窄的遮蔽面,你可以做一个简单的实验。如果你想做立体,把你的两个手指放进去,一个在另一个的前面,在你的左眼,这个手指在这个的左边,但是在你的右眼,另一个手指在这个的左边,所以它交换。

因此,如果你有一个立体算法试图找出如何进行匹配这个问题。我将告诉你,目前立体算法做大量的工作来处理遮挡问题,因发生的所有的时间,因为如果我有一个边,面前的另一个对象的对象,会有像素是可见的一只眼睛或一个相机,而不是其他。目前的立体算法对于相反排序约束的问题还不是很好。各种大小的问题,等等,这就是目前的技术水平。

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值