线性代数
文章平均质量分 67
Tom Boom
这个作者很懒,什么都没留下…
展开
-
向量的 加,减,乘 运算_2
目录向量的加法运算向量的减法运算向量的乘法运算向量的加法运算几何方式,看向量加法:两个向量之和可以看成端到端相连,从第一箭头的尾部 开始到 第二个箭头的头部结束,形成的新箭头(蓝色)是前两个向量的和。数字方式,看向量加法:我们给出两个向量的坐标列表后, 我们可以通过将相应坐标相加,得出向量之和:我们来看看用图来表示:我们再看,如果将...翻译 2019-02-27 17:21:18 · 3001 阅读 · 0 评论 -
向量的大小和方向,零向量的方向_3
目录向量的大小向量的方向零向量的方向向量的大小向量的两个重要的属性是 大小 和 方向。向量的大小是指移动的量。向量的方向是指朝着哪个方向移动。现在我们要干嘛呢??我们来更正式来定义这个概念。如果将向量看成是从一个点到另一个点的箭头,则大小就是箭头的长度,即所连接的两个点之间的距离。如图:所以,我们要计算它的这个距离,我们决定使用勾股定理:得出:...翻译 2019-02-27 19:48:22 · 25337 阅读 · 0 评论 -
向量的内积,与角的关系,向量与它本身点积_4
目录什么是点积?点积运算向量与角的联系向量和它本身什么是点积?两个向量相乘,我们应该会想到如下场景:但这个在现实生活中,用处不大。 但是其他乘法形式很有用。最重要的是一种向量运算方式是内积。也成为点积。叫点积,是因为我们通常表示为:在两个相乘的向量之间加个点。如图:从几何角度来看,这一运算很重要。使我们能够计算两个不同向量形成的角度。更加准确的...翻译 2019-02-28 11:05:53 · 12056 阅读 · 0 评论 -
平行和正交向量_5
目录平行向量正交向量特殊的零向量平行向量如果一个向量是另一个向量的纯量倍数,那么这两个向量是平行向量。请注意,v 也和零向量平行。v 也和它自己平行。即使两个向量指向相反的方向也是平行向量。正交向量相反,当两个向量不为0情况下,如果两个向量的点积是0,则这两个向量是正交向量。如下图: 如果在没有前提条件下,那有...翻译 2019-02-28 12:57:51 · 1817 阅读 · 0 评论 -
向量的投影_6
目录什么是投影?计算投影什么是投影?正交性 这一概念非常有用。从根本上来说,它使我们能够结构性地将对象 分解成 更简单的对象组合。我们先来看看第一个正交性现象:假设 b 是常向量 ,或者可以将 b 看做单词 basis,它就是基向量:可以将b看做从原点出发,穿过原点线条l :我们将开始学习 向量v 投影到 基向量b 的过程。如图:投影的初入理解:...翻译 2019-03-02 18:01:02 · 25384 阅读 · 0 评论 -
向量积 和 它的计算_7
目录什么是向量积?向量积的定义向量积的计算什么是向量积?还有一种常见的向量乘法,尤其在工程 物理 和 计算图形 领域很常见,这种方法叫做 向量积。向量积 在三维线性代数中非常有用,但无法类推到多维空间。从几何角度看,两个向量v 和 w 的向量积,是与 v 和 w 都正交的向量:以下是求大小,是 v 和 w 的夹角:请注意,这里和点积不一样,向量积的输出...翻译 2019-03-03 19:08:44 · 3743 阅读 · 1 评论 -
什么是向量?_1
什么是向量?几何学中的两大基本概念是 点 和 向量 。点 ,本质上是空间的一个位置。我们在2维的笛卡尔坐标系来表示它为(x, y),例如:同样,如果是3维空间,一样,我们表示为(x, y, z)。向量,是表示位置更改的对象。在欧几里得空间,向量可以看做连接两个点的箭头。例如:请记住,向量的重要属性是大小 和 方向。即紫色箭头的长度,以及方向。现在,我们以...原创 2019-02-27 14:31:07 · 20580 阅读 · 0 评论