对于小于90度的角,增加角A的度数,也会增加该角对边的长度(假设斜边的长度保持不变),因此角A的正弦值也会随着增大,同时角A的临边将变短,同样角A的余弦值也会减小。
对于大于90度的角,可以理解为将相应角(180-大于90度的角)所在的三角形水平翻转,因此该角的对边与临边就会相应的减小或增大(斜边的长度不变):
这样看来,该角的正弦值就会减小,余弦值变大。当角度大于180度时,变化规律与大于90度小于180角的变化规律相同,当角度大于270度时,变化规律同小于90度角的变化规律。当大于360度时,整个变化规律又重复进行——三角函数是周期性变化的,最小正周期为360度:
如果我们使用图象来表示0至360度角的正弦曲线,如下图所示:
余弦值的图象与正弦图象类似,90度为一个相位。我们可以发现当一个角的正弦值为1或者是-1时,余弦值为0:
正切函数的图象与正弦余弦函数的图象截然不同,从下面的正切图象中,我们可以看到当角度为90度或者是270度时,正切值趋近于无限大,当接近这些角度时,该角的临边趋近于0,该角的对边趋近于该角的斜边。因为无限大不是一个合理的返回值,所以当AE计算到tan(90)或tan(270)时,其返回值为一个非常大的值:
你也许会发现正切值在接近0或180度时变化的很缓慢,但是当角度接近90度或270度时,变化的非常快。例如,角度从0至89度,其正切值从0仅仅变化到57.3,而从89度至90度,正切值从57.3变化到1015。
我们还会发现正切函数不是连续的,当角度超越90度或270度时,其正切值会立即从正值变化到负值。因为当角度如此变化时,临边的方向会发生变化。
正切函数也是周期变化的,其最小正周期是180度。