数据结构-链栈

链式存储的栈称为链栈,结构如下图:
链栈
链栈无满栈问题,空间可扩充,但有栈空问题,栈空的条件为top->next==NULL。进栈与入栈仅在栈顶进行,链式栈的栈顶在栈表头。链栈的定义如下:

struct StackNode {
    int data;                 //结点数据
    StackNode *next;         //结点链指针
};

class Stack
{
    StackNode *top;     //栈顶指针
public:
    Stack() { top=new StackNode; top -> next = NULL; }    //创建头结点
    ~Stack() { delete top; }
    void Push(int item);  //入栈
    int Pop();           //出栈
    int GetTop();       //获取栈顶元素
    void Clear();      //清空栈
    bool IsEmpty() { return top->next == NULL; } //判断栈是否为空
    void Transform(long N, int d);   //数制转换
};

类中具体的算法实现如下:

//入栈操作
void Stack::Push(int item) 
{
    StackNode *p;             //新建一结点
    p = new StackNode;
    p->data = item;
    p->next = top->next;
    top->next = p;
}
//出栈操作
int Stack::Pop()
{
    StackNode *p;
    if (top->next!=NULL)
    {
        p = top->next;
        int retvalue = p->data;  //暂存栈顶数据
        top->next = p->next;    //修改栈顶指针
        delete p;              
        return retvalue;      //释放,返回数据
    }else
    {
        cout<<"the stack is empty!"<<endl;
        exit(0);
    }
}
//获取栈顶元素操作
int Stack::GetTop()
{
    if (top->next!=NULL)
    {
        return top->next->data;
    }else
    {
        cout<<"the stack is empty!"<<endl;
        exit(0);
    }
}

void Stack::Clear()
{
    StackNode *p;
    while (top->next!=NULL)
    {
        p = top->next;
        top->next = p->next;    //修改栈顶指针
        delete p;
    }
}

栈的应用–数制转换(十进制转d进制):

void Stack::Transform(long N, int d)
{
    Stack s;
    cout<<N;
    while (N!=0)
    {
        int k = N%d;
        s.Push(k);
        N = N/d;
    }
    cout<<"的"<<d<<"进制数为:";
    while (!s.IsEmpty())
    {
        cout<<s.Pop();
    }
    cout<<endl;
}

在主函数进行具体的数据操作:

int main() {
    Stack stack;
    stack.Push(12);
    stack.Push(23);
    stack.Pop();
    int t = stack.GetTop();
    bool b = stack.IsEmpty();
    cout<<b<<endl;
    cout<<t<<endl;
    stack.Transform(4587,8);   //转八进制
    return 0;
}
<think>好的,我现在需要给用户介绍一下数据结构中的。首先,我得回忆一下的基本概念和特点。的一种实现方式,与顺序(基于数组)不同,使用表作为存储结构。那它的节点结构应该包含数据域和指针域,对吧?每个节点存储数据和一个指向下一个节点的指针。 接下来,我需要明确的操作,比如入、出、获取顶元素等。这些操作的时间复杂度如何呢?因为不需要预先分配固定大小的空间,所以理论上可以动态扩展,不会有满的情况,这样入操作应该总是O(1)的时间复杂度。而出操作同样只需要修改指针,也是O(1)。不过要注意的是,的每个节点需要额外的指针空间,可能会有更多的内存开销。 然后,对比顺序的优缺点。顺序可能会有容量限制,但存取速度快;而更灵活,但每个节点需要额外指针,内存利用率可能较低。这里可能需要举例说明,比如入操作的具体步骤:创建新节点,将新节点的next指向当前顶,然后更新顶指针。 另外,我需要考虑的应用场景,比如在需要动态调整大小时,或者内存分配不连续的情况下使用更合适。例如,某些递归算法的非递归实现可能会用到,如果的大小不确定,会是更好的选择。 还有,可能需要注意的边界条件,比如空时的处理。当顶指针为null时,出操作应该返回空或者抛出异常。而获取顶元素时也需要检查是否为空,避免空指针异常。 在结构上,我应该先定义的结构,然后逐步讲解基本操作,再分析优缺点和应用。可能需要画图辅助说明,但由于是文字描述,需要用语言准确表达节点间的接关系。例如,每个新元素插入在表头部,顶指针始终指向表的第一个节点。 最后,检查是否有遗漏的关键点,比如的初始化、判空操作等。确保每个步骤都逻辑清晰,用户能够逐步理解的实现和操作过程。同时,注意使用正确的中文术语,避免技术术语翻译错误。</think>### 的定义 的一种式存储结构,通过表实现。它由多个节点组成,每个节点包含: - **数据域**:存储元素值 - **指针域**:指向下一个节点 的结构示意图如下: $$ \text{顶} \to \text{节点}_1 \to \text{节点}_2 \to \cdots \to \text{节点}_n \ (\text{底}) $$ --- ### 的特点 1. **动态扩容**:无需预先定义容量,内存按需分配。 2. **无满问题**:除非系统内存耗尽,否则可一直入。 3. **额外指针开销**:每个节点需要存储指针,空间利用率略低。 --- ### 核心操作及实现 #### 1. 节点结构 ```c typedef struct StackNode { int data; // 数据域(以整型为例) struct StackNode *next; // 指针域 } StackNode; ``` #### 2. 初始化 ```c StackNode* InitStack() { return NULL; // 顶指针初始化为空 } ``` #### 3. 判空操作 ```c int IsEmpty(StackNode *top) { return (top == NULL); // 顶指针为空表示空 } ``` #### 4. 入(Push) - **步骤**: 1. 创建新节点并赋值 2. 新节点的`next`指向原顶 3. 更新顶指针 ```c StackNode* Push(StackNode *top, int value) { StackNode *newNode = (StackNode*)malloc(sizeof(StackNode)); newNode->data = value; newNode->next = top; // 新节点指向原top = newNode; // 更新顶 return top; } ``` - **时间复杂度**:$O(1)$ #### 5. 出(Pop) - **步骤**: 1. 检查是否为空 2. 保存顶节点 3. 更新顶指针为`top->next` 4. 释放原顶节点内存 ```c StackNode* Pop(StackNode *top, int *value) { if (IsEmpty(top)) { printf("空,无法出\n"); return top; } StackNode *temp = top; *value = temp->data; // 返回被删除的值 top = top->next; // 更新顶 free(temp); // 释放内存 return top; } ``` - **时间复杂度**:$O(1)$ #### 6. 获取顶元素(GetTop) ```c int GetTop(StackNode *top) { if (IsEmpty(top)) { printf("空\n"); return -1; // 错误码 } return top->data; // 直接返回顶数据 } ``` --- ### vs 顺序 | 特性 | | 顺序 | |--------------|--------------------------|----------------------| | **存储方式** | 离散内存(表) | 连续内存(数组) | | **容量** | 动态扩展 | 固定大小 | | **空间效率** | 较低(需存储指针) | 较高 | | **适用场景** | 频繁动态增删、内存碎片多 | 数据量已知且固定 | --- ### 应用场景 1. **函数调用**:编译器实现递归调用。 2. **表达式求值**:处理括号匹配、中缀转后缀表达式。 3. **浏览器历史**:通过“前进”“后退”模拟操作。 --- ### 总结 通过表实现结构,具有动态扩容、无满限制的特点,适合元素数量变化频繁的场景。其核心操作(入、出)时间复杂度均为$O(1)$,但需注意指针操作和内存管理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值