理解递归的想法不难,关键是如何 快速 写出 正确 高效 的递归。
函数递归调用的基本形式:
Type MyFunction(){
...
MyFunction();
}
下面以递归实现 快速幂 ,说明一下写递归的一些注意点,这些要点是不是必要的我不知道,我想这需要严格的证明。
一般求幂的方法是调用<cmath>中的pow()函数,例如求我们可以用pow(x, n)函数来得到。(调轮子)
如果要造轮子的话,一种想法是用for循环:
#include <iostream>
#include <cmath>
using namespace std;
int forPower(int x, int n){
int y = 1;
for(int i = 0; i < n; i++){
y = y * x;
}
return y;
}
int main() {
cout << "pow(2,6)=" << pow(2,6) << endl;
cout << "forPower(2,6)=" << forPower(2,6) << endl;
return 0;
}
当然,forPower(2,6) = 2 * 2 * 2 * 2 * 2 * 2,执行了五次乘法。即forPower(x, n)的时间复杂度大约是O(n)。可不可以更快呢?
比如对于

本文探讨如何使用递归实现快速幂算法,通过减少乘法操作提高计算效率。介绍了递归的基本形式,并以2的n次幂为例,详细解释了递归过程中的关键步骤:向内层的递归、向外层的返回以及边界层的返回。通过这种方法,将时间复杂度从O(n)降低到O(log n)。最后,作者分享了自己对写好递归的看法,并欢迎读者交流讨论。
最低0.47元/天 解锁文章
517

被折叠的 条评论
为什么被折叠?



