问题描述:Given an array S of n integers, are there elements a; b; c in S such that a + b + c = 0? Find all unique
triplets in the array which gives the sum of zero.
Note:
• Elements in a triplet (a; b; c) must be in non-descending order. (ie, a ≤ b ≤ c)
• The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}.
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
问题分析:我们对原数组进行排序,然后开始遍历排序后的数组,这里注意不是遍历到最后一个停止,而是到倒数第三个就可以了。这里我们可以先做个剪枝优化,就是当遍历到正数的时候就break,为啥呢,因为我们的数组现在是有序的了,如果第一个要fix的数就是正数了,那么后面的数字就都是正数,就永远不会出现和为0的情况了。然后我们还要加上重复就跳过的处理,处理方法是从第二个数开始,如果和前面的数字相等,就跳过,因为我们不想把相同的数字fix两次。对于遍历到的数,用0减去这个fix的数得到一个target,然后只需要再之后找到两个数之和等于target即可。我们用两个指针分别指向fix数字之后开始的数组首尾两个数,如果两个数和正好为target,则将这两个数和fix的数一起存入结果中。然后就是跳过重复数字的步骤了,两个指针都需要检测重复数字。如果两数之和小于target,则我们将左边那个指针i右移一位,使得指向的数字增大一些。同理,如果两数之和大于target,则我们将右边那个指针j左移一位,使得指向的数字减小一些
代码:
class Solution
{
public:
vector<vector<int>>threeSum(vector<int>& num)
{
vector<vector<int>> result;
sort(num.begin(),num.end());//排序数组
if(num.empty() || num.back() < 0 || num.front() > 0)
{
return result;
}
for(int k = 0;k < num.size();k++)
{
if(num[k] > 0)
{
break;
}
if(k > 0 && num[k] == num[k - 1])//防止重复
{
continue;
}
int target = 0 - num[k];
int p1 = k + 1;//important
int p2 = num.size() - 1;
while(p1 < p2)
{
if(num[p1] + num[p2] == target)
{
result.push_back(num[k],num[p1],num[p2]);
while(p1 < p2 && num[p1] == num[p1])
{
p1++;
}
while(p1 < p2 && num[p2] == num[p2])
{
p2--;
}
++p1;
--p2;
}
else if(num[p1] + num[p2] < target)
{
p1++;
}
else
{
p2--;
}
}
}
return result;
}
};