题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2049
题目大意:n 个人m个错排,问有多少种情况。
解题思路:先说结论,错排递推公式:f[n] = (n - 1) * (f[n-1] + f[n-2]);
错排的情况:
首先考虑,如果开始有n-1个新郎,并且这n-1个人都已经完成了错排(有f(n-1)种可能),现在又来了一个人,那么后来的第n个人可以通过用自己的新娘去和那n-1个人中的任意一个交换,来实现n个人都错排。这种情况有(n-1)*f[n-1]种可能;
另外,如果开始的n-1个人不是都错排,那么要想使第n个人过来与其中一个交换后实现错排的话就必须满足两个条件:
1.那n-1个人中只有一个人选到了自己的新娘,也就是说有n-2个人都已经错排了。
2.第n个人必须和那个选到自己新娘的人去交换,但那个选到自己新娘的人可以是n-1个人中的任意一个。这种情况有(n-1)*f[n-2]种可能。
其他情况都不能满足n个人错排。
因此递推关系:f[n]=(n-1)*(f[n-1]+f[n-2])。
代码实现:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<string>
#include<map>
#include<vector>
#include<set>
#define FAST ios::sync_with_stdio(false)
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int mod = (int)1e9 + 7;
const int maxn = (int)1e5 + 5;
using namespace std;
ll a[25] = {1, 1, 2}, b[25] = {0, 1, 1, 2};
void init(){
for(int i = 3; i <= 20; i++){
a[i] = a[i-1] * i;
}
for(int i = 4; i <= 20; i++){
b[i] = (i - 1) * (b[i-1] + b[i-2]);
}
}
int main()
{
init();
int t; scanf("%d", &t);
while(t--){
int n, m; scanf("%d %d", &n, &m);
printf("%lld\n", a[n] / a[m] / a[n-m] * b[m]);
}
return 0;
}
知道这个东西就是个水题了
over