poj1088

//============================================================================
// Name        : 1088.cpp
// Author      : 
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================

#include <iostream>
using namespace std;

typedef struct location {
	int height;
	struct location* next[4];
	int nextNumber;
	int step;
} Location;

void connect(Location* a, Location* b) {
	if (a->height > b->height) {
		a->next[a->nextNumber] = b;
		a->nextNumber++;
	} else if (b->height > a->height) {
		b->next[b->nextNumber] = a;
		b->nextNumber++;
	}
}

int calStep(Location *loc) {
	if (loc->step) {
		return loc->step;
	} else {
		if (loc->nextNumber == 0) {
			loc->step = 1;
		} else {
			int max = 0;
			for (int i = 0; i < loc->nextNumber; i++) {
				int nstep = calStep(loc->next[i]);
				if (max < nstep) {
					max = nstep;
				}
			}
			loc->step = max + 1;
		}
		return loc->step;
	}
}

int main() {
	int r, c;
	cin >> r >> c;

	Location loc[r][c];
	for (int i = 0; i < r; i++)
		for (int j = 0; j < c; j++) {
			cin >> loc[i][j].height;
			loc[i][j].nextNumber = 0;
			loc[i][j].step = 0;
			if (i > 0) {
				connect(&(loc[i - 1][j]), &(loc[i][j]));
			}
			if (j > 0) {
				connect(&(loc[i][j - 1]), &(loc[i][j]));
			}
		}
	int max = 0;
	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++) {
			int nstep = calStep(&loc[i][j]);
			if (max < nstep)
				max = nstep;
		}
	}
	cout << max << endl;
	return 0;
}

题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值