主观Bayes算法的实现

该文探讨了基于主观Bayes方法的不确定性推理算法,通过实验比较了结论不确定性的合成与更新算法,实现了不确定推理问题的自动化解决。算法涉及充分性度量LS、必要性度量LN及先验概率,利用证据的动态强度处理不确定性,并提供MATLAB程序示例。
摘要由CSDN通过智能技术生成

主观Bayes算法的实现

摘 要

不确定性推理是指建立在不确定性知识和论据基础上的推理。首先,本文设计了基于主观Bayes方法的不确定性推理算法, 通过实验结果比较了结论不确定的合成算法与更新算法的一致性, 实现了不确定推理问题求解的自动化。
关键词:不确定性推理 主观Bayes

1 问题描述
在证据不确定的情况下,以充分性量度LS、必要性量度LN、E 的先验概率P(E)和H的先验概率P(H)作为前提条件,分析P(H/S)和P(E/S)的关系。

2 主观Bayes原理介绍
主观Bayes方法又称主观概率论,是杜达(R.O.Duda)等人在1976年提出的,是一种不确定性推理模型。
①知识不确定性的表示:
在主观Bayes方法中,知识是用产生式规则表示的,具体形式为:

其中,E是知识的前提条件,既可以是简单条件,也可以是复合条件。
• P(H)是结论H的先验概率,由专家根据经验给出。
• LS称为充分性度量,用于指出E对H的支持程度,取值范围为[0,∞),其定义为:

• LN称为必要性度量,用于指出¬ E对H的支持程度,取值范围为[0,∞),其定义为:

LS和LN的值由领域专家给出,代表知识的静态强度。
②证据不确定性的表示:
• 在主观Bayes方法中,证据的不确定性用概率表示[3]。对于证据E,由用户根据观察S给出P(E|S),即动态强度。用P(E|S)描述证据的不确定性 (证据E不是可以直接观测的)。
• 由于主观给定P(E|S)有所困难,所以实际中可以用可信度C(E|S)代替P(E|S)。
• 在PROSPECTOR中C(E|S)取整数:{-5,….5}
C(E|S)=-5表示在观测S下证据E肯定不存在P(E|S)=0
C(E|S)= 5表示在观测S下证据E肯定存在P(E|S)=1
C(E|S)= 0表示S与E无关,即P(E|S)= P(E)
• 给定C(E|S)后,P(E|S)可近似计算如下:

组合证据的不确定性:
(1)当组合证据是多个单一证据的合取时,即:

则:
(2)当组合证据是多个单一证据的析取时,即:

则:
(3)对于“¬”运算, 则:

3 算法描述
MATLAB程序如下:

clc; 
X=input('请输入LS,LN,P(H),P(E):'); 
P1=(X(1)*X(3))/((X(1)-1)*X(3)+1); 
P0=(X(2)*X(3))/((X(2)-1)*X(3)+1); 
axis([0 1.1 0 1.1]); 
line([0 X(4)],[P0 X(3)],'color','k','linewidth',2); 
line([X(4) 1],[X(3) P1],'color','k','linewidth',2); 
line([X(4) X(4)],[0 X(3)],'linestyle',':'); 
line([0 X(4)],[X(3) X(3)],'linestyle',':');
 line([1 1],[0 P1],'linestyle',':');
 line([0 1],[P1 P1],'linestyle',':'); 
title('主观BAYES'); 
text(0,P0,'P(H/~E)'); 
text(0,X(3),'P(H)'); 
text(0,P1,'P(H/S)'); 
text(X(4),0,'P(E)'); 
xlabel('P(E/S)');
 ylabel('P(H/S)'); 
grid; 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值