bobo老师机器学习笔记-第四课:KNN算法

本文记录了跟随Bobo老师学习机器学习过程中,关于KNN算法的笔记。通过knn.py实现KNN算法,model_selection.py提供数据处理工具,包括训练集和测试集的划分;metrics模块用于模型评估,而client文件则用于运行和测试整个算法流程。
摘要由CSDN通过智能技术生成

自己参考Bobo老师写得代码:

主要分为四个文件: knn.py中实现KNN算法、model_selection.py封装了样本数据的一些工具方法,比如切分为训练集和测试集;

metrics用来对模型进行评估、client用来调用算法进行运行

# -*- encoding: utf-8 -*-
"""
实现KNN的分类算法
"""
import numpy as np
from math import sqrt
from collections import Counter
from metrics import accuracy_score


class KnnClassifier(object):
    """
    K-近邻算法,(K Nearest Neighbour),简称KNN
    """

    def __init__(self, k):
        """
        K表示
        :param k: 表示参考的个数
        """
        self.k = k

    def fit(self, X_train, y_train):
        """
        利用输入的样本集进行训练KNN算法
        :param X_train: X 训练样本集
        :param y_train: y
        :return:
        """
        self.X_train = X_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值