【BZOJ 1832】 [AHOI2008]聚会|倍增lca

100ac 留念

双倍经验题


两两求距离 相加除以二为距离

两两求lca depth最大为三个的lca


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN=500000+10;
int to[MAXN][20],depth[MAXN];
int tot,g[MAXN],nnext[MAXN*2],num[MAXN*2] ;
int team[MAXN],head,tail;
void add(int x,int y)
{
	tot++;
	nnext[tot]=g[x];
	g[x]=tot;
	num[tot]=y;
}
void bfs()
{
	depth[1]=1;
	team[++tail]=1;
	while(head<tail)
	{
		int x=team[++head];
		for(int i=1;i<=19;i++) to[x][i]=to[to[x][i-1]][i-1];
		for(int i=g[x];i;i=nnext[i])
		{
			int tmp=num[i];
			if(tmp==to[x][0]) continue;
			depth[tmp]=depth[x]+1;
			to[tmp][0]=x;
			team[++tail]=tmp;
		}
	}
}
int lca(int x,int y)
{
	if(depth[x]<depth[y])swap(x,y);
	for(int i=19;i>=0;i--)
		if(depth[to[x][i]]>=depth[y])
			x=to[x][i];
	if(x==y) return x;
	for(int i=19;i>=0;i--)
		if(to[x][i]!=to[y][i])
			x=to[x][i],y=to[y][i];
	return to[x][0];
}
int dis(int x,int y,int fa)
{
	return abs(depth[x]-depth[fa])+abs(depth[y]-depth[fa]);
}
int main()
{
	int n,m;
	int x,y,z;
	scanf("%d %d",&n,&m);
	for(int i=1;i<n;i++) scanf("%d %d",&x,&y),add(x,y),add(y,x);
	bfs();
	for(int i=1;i<=m;i++)
	{
		scanf("%d %d %d",&x,&y,&z);
		int zx=lca(x,z);
		int zy=lca(z,y);
		int xy=lca(x,y);
		int ans=zx;
		if(depth[ans]<depth[zy]) ans=zy;
		if(depth[ans]<depth[xy]) ans=xy;
		int tmp1=dis(x,y,xy);
		int tmp2=(dis(x,z,zx)+dis(z,y,zy)-tmp1)/2;
		printf("%d %d\n",ans,tmp1+tmp2);
	}
	return 0;
}




题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值