
60分钟入门PyTorch
文章平均质量分 85
翻译:Deep Learning with PyTorch: A 60 Minute Blitz
stormsha
博客主页:stormsha.com
知识库:devsroad.com
展开
-
60 分钟入门 PyTorch
"60 分钟入门 PyTorch"是一份由 PyTorch 官方提供的快速入门教程,旨在帮助初学者在一小时内掌握 PyTorch 的基本概念和使用方法。该教程涵盖了 PyTorch 的安装、张量(Tensor)操作、自动微分(Autograd)、神经网络的构建和训练等内容,通过一系列简单的例子和实践练习,帮助读者快速上手 PyTorch。该教程适合对深度学习和 PyTorch 有一定了解,但希望快速掌握其基本用法的读者。原创 2024-04-20 18:44:58 · 416 阅读 · 0 评论 -
60分钟入门PyTorch(四):训练一个分类器
从之前的神经网络一节复制神经网络代码,并修改为接受3通道图像取代之前的接受单通道图像。return x我们使用交叉熵作为损失函数,使用带动量的随机梯度下降。翻译 2024-04-23 11:17:07 · 113 阅读 · 0 评论 -
60分钟入门Pytorch(三):神经网络
kernelreturn xprint(net)Net(你只需定义forward函数,backward函数(计算梯度)在使用autograd时自动为你创建.你可以在forward函数中使用Tensor的任何操作。返回模型需要学习的参数。10构造一个随机的3232的输入,注意:这个网络(LeNet)期望的输入大小是3232.如果使用MNIST数据集来训练这个网络,请把图片大小重新调整到32*32.print(out)将所有参数的梯度缓存清零,然后进行随机梯度的的反向传播.注意。翻译 2024-04-23 11:07:57 · 93 阅读 · 0 评论 -
60分钟入门PyTorch(二):Autograd自动微分
torch.autograd是pytorch自动求导的工具,也是所有神经网络的核心。我们首先先简单了解一下这个包如何训练神经网络。翻译 2024-04-20 18:32:14 · 781 阅读 · 0 评论 -
60 分钟入门 PyTorch(一):Tensors
Tensors张量是一种特殊的数据结构,它和数组还有矩阵十分相似。在Pytorch中,我们使用tensors来给模型的输入输出以及参数进行编码。Tensors除了张量可以在gpu或其他专用硬件上运行来加速计算之外,其他用法类似于Numpy中的ndarrays。如果你熟悉ndarrays,您就会熟悉tensor的API。如果没有,请按照这个教程,快速了解一遍API。翻译 2024-04-20 16:39:49 · 100 阅读 · 0 评论