DivinerShi
码龄13年
关注
提问 私信
  • 博客:463,281
    463,281
    总访问量
  • 48
    原创
  • 1,475,583
    排名
  • 305
    粉丝
  • 1
    铁粉

个人简介:博客

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2012-06-29
博客简介:

快来学习鸭~~~

查看详细资料
个人成就
  • 博客专家认证
  • 获得340次点赞
  • 内容获得135次评论
  • 获得1,039次收藏
创作历程
  • 19篇
    2019年
  • 7篇
    2018年
  • 19篇
    2017年
  • 3篇
    2016年
成就勋章
TA的专栏
  • 深度学习
    33篇
  • 三维
    2篇
  • 特征
    2篇
  • 杂乱笔记
    1篇
  • python
    1篇
  • 纸质笔记整理
    1篇
  • 机器学习
    8篇
  • 推荐系统
    18篇
  • 搜索排序
    1篇
  • graph embedding
    5篇
知乎地址
https://www.zhihu.com/people/xfu_shi/posts
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

[CTR预估] Recommending What Video to Watch Next

1.介绍本文讲解的是youtube发表在Recsys 2019的文章“Recommending What Video to Watch Next: A Multitask Ranking System””文章是关于推荐系排序模块的设计,算是wide&deep model的进阶,并针对Multitask Learning和Selection Bias做了模型层面的优化。2.模型结构...
原创
发布博客 2019.12.29 ·
1991 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

【CTR预估】 xDeepFM模型

xDeepFM 模型看作者邮箱应该中科大、北邮、微软合作发表的,发表在kdd2018 。看这个模型的原因是因为最近在写Deep Cross Network的时候感觉总是怪怪的,因为DCN对同一个特征的embedding内部都做了特征的交叉,这个和我们正常直观的特征交叉会有明显的出入,虽然DCN模型在实践中确实会好于正常的wide&deep,说明显式的特征交叉是有意义的,但是有没有办法不对...
原创
发布博客 2019.11.10 ·
1974 阅读 ·
5 点赞 ·
3 评论 ·
4 收藏

【GCN】: Graph Convolutional Neural Networks for Web-Scale Recommender Systems

最近看了“Graph Convolutional Neural Networks for Web-Scale Recommender Systems”这篇文章,是Pinterest将GCN成功应用在大规模真实场景的论文,唯一可惜的是没有公开源码。论文下载地址:https://arxiv.org/pdf/1806.01973论文包含了理论创新和实际落地实现中的一些工程优化。这里对算法理论这块...
原创
发布博客 2019.06.16 ·
4711 阅读 ·
7 点赞 ·
0 评论 ·
24 收藏

【CTR预估】DSIN模型

最近看了一篇文章‘Deep Session Interest Network for Click-Through Rate Prediction’, 这篇是阿里发表在IJCAI2019的文章。文章地址:https://arxiv.org/abs/1905.06482作者还开源了代码:https://github.com/hhh920406/DSIN淘宝最近也公开了一个rank模型,和这...
原创
发布博客 2019.05.30 ·
1561 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【CTR预估】Deep & Cross Network 模型

DCN模型是组合了显式和隐式特征交叉的一个模型。如果了解WD模型的话,简单的说这篇文章就是把WD模型的wide侧改成了cross网络,用来显式的做一些特征的交叉,因为DNN虽然有着拟合任意模型的能力,但是世界上没有免费的午餐,所以显式的定义特征交叉还是很有必要的。论文下载地址:https://arxiv.org/pdf/1708.05123.pdf这里我对一些常用的ctr预估模型进行了复现...
原创
发布博客 2019.05.07 ·
923 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【Semantic Embedding】: BERT模型

时间过的是真快,bert已经是去年火起来的模型了。论文"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"地址:https://arxiv.org/abs/1810.04805 要了解bert一定要先看看tranformer模型,就是那篇"attention is all...
原创
发布博客 2019.05.02 ·
1522 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【Semantic Embedding】: LSTM-DSSM模型

论文下载地址:https://arxiv.org/pdf/1412.6629.pdf其实这几篇论文,DSSM, C-DSSM, LSTM-DSSM 百度一下资料一大堆,不过我还是选择自己去看了一遍,然后做一下笔记,便于更深入的理解。不过看完了论文发现,这几篇文章真的是短小精悍。。。基本都是五六页结束。这篇文章还是一样的套路,是这对DSSM模型的修改,毕竟全连接网络是最简单的神经网络,替换一...
原创
发布博客 2019.04.17 ·
3290 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

【Semantic Embedding】: CDSSM(CLSM)模型

文章下载地址:https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2014_cdssm_final.pdfDSSM模型的输入是query和doc的词袋模型生成的向量,所以模型丢失来文本的上下文结构信息。而CDSSM模型则通过词的n-gram和卷积池化操作来捕获上下文关系,按文章说明的,该算法相比原始DS...
原创
发布博客 2019.04.17 ·
7903 阅读 ·
5 点赞 ·
1 评论 ·
5 收藏

【Semantic Embedding】: DSSM模型

论文下载地址代码实现DSSM现在应该已经算是经典的文章了,有些年头了。网上已经有很多优秀的博客对该算法进行分析,建议去看那些文章,讲的比较全面。DSSM的思想是利用搜索点击数据,分别将query和documents利用DNN映射到高纬语义空间,然后将query和document的高纬语义向量利用余弦相似度,对向量进行相似度计算。训练阶段,对于点击数据,如果在当前query下,被点击...
原创
发布博客 2019.04.15 ·
1961 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

【Graph Embedding】: SDNE算法

论文“Structural Deep Network Embedding”发表在kdd2016论文下载地址:https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf论文利用深度自编码器来学习图中节点的embedding向量,结合一阶和二阶相似度进行联合训练,将二阶相似度作为无监督信息,捕获全局网络结构信息,一阶相似度作为有监...
原创
发布博客 2019.04.09 ·
1709 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【Graph Embedding】: node2vec算法

论文“node2vec: Scalable Feature Learning for Networks”发表在kdd2016,文章提出了一个新的graph embedding论文地址:https://www.kdd.org/kdd2016/papers/files/rfp0218-groverA.pdf作者提供的代码地址:http://snap.stanford.edu/node2vec/...
原创
发布博客 2019.03.27 ·
3404 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

【Graph Embedding】: LINE算法

论文“LINE: Large-scale Information Network Embedding”发表在WWW‘15上,提出了一个适用于大规模网络embedding算法“LINE”。论文下载地址:https://arxiv.org/pdf/1503.03578.pdf作者公布的代码:https://github.com/tangjianpku/LINE介绍本篇文章提出的算法定义...
原创
发布博客 2019.03.24 ·
4034 阅读 ·
1 点赞 ·
3 评论 ·
8 收藏

【Graph Embedding】: DeepWalk算法

论文“DeepWalk: Online Learning of Social Representations” 发表在kdd2014,下载地址:https://arxiv.org/pdf/1403.6652.pdf作者开源的代码:https://github.com/phanein/deepwalk文章提出的deepwalk用于学习图网络中节点的低维表示,学习出的低纬embedding...
原创
发布博客 2019.03.21 ·
1507 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【Graph Embedding】: metapath2vec算法

metapath2vec: Scalable Representation Learning for Heterogeneous Networks发表在kdd2017,用于解决异构网络的embedding表示。个人看完文章的感觉就是将deepwalk的算法思路引入到异构网络当中,并针对异构网络的特点,针对deepwalk算法中的各个步骤,针对性的进行优化。所以看在了解metapath2vec之前...
原创
发布博客 2019.03.17 ·
11177 阅读 ·
7 点赞 ·
7 评论 ·
47 收藏

【Graph Embedding】:Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba

本文是阿里在kdd2018发表的关于使用graph embedding作为淘宝首页推荐召回策略的算法实现。现在利用图embedding来做召回算是业界最前沿的技术,下面我们来看看淘宝是如何来用户行为转化为图,以及从图中学习出item的embdding。论文下载地址:https://arxiv.org/abs/1803.02349介绍淘宝应该是国内最大的C2C平台,平台上承载着10亿的用...
原创
发布博客 2019.03.03 ·
2309 阅读 ·
0 点赞 ·
5 评论 ·
3 收藏

【Airbnb搜索】:Real-time Personalization using Embeddings for Search Ranking at Airbnb

原始论文下载地址:本文是kdd 2018 的best paper,文章来自airbnb的搜索推荐团队,描述的是airbnb如何使用embedding来提高搜索和排序的效果。知乎有官方认证的中文文章(文章地址,原始论文)。文章利用搜索的session数据来获取Listing和用户的embedding,全文思想相对来说还是比较简单的,但是整体针对业务实际情况,一步步的解决问题的思路很清晰,和a...
原创
发布博客 2019.02.24 ·
2777 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

【Airbnb搜索】:Applying Deep Learning To Airbnb Search

论文地址:https://arxiv.org/abs/1810.09591这篇论文将的是airbnb搜索在深度学习方面的探索airbnb最开始在搜索排序中使用的是gbdt,但是随着模型的稳定,gbdt带来的提升越来越有限。而这篇文章就是要讲airbnb将深度学习技术应用到实际环境中去的实践。论文并有没提出什么新的理论技术,重点放在了整个工程实现以及模型优化,迭代,各种在由传统机器学习向深度...
原创
发布博客 2019.02.16 ·
850 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

《深度学习入门:基于Python的理论与实现》高清PDF+代码

发布资源 2019.01.04 ·
rar

【日本雅虎新闻推荐】:Embedding-based News Recommendation for Millions of Users(附开源代码)

本篇论文由日本雅虎团队发表于KDD 2017,利用深度学习方法将用户和文章进行embedding化,再进行推荐。下载地址:http://dacemirror.sci-hub.tw/proceedings-article/b79bf692bc190d28d255671a64aedf02/okura2017.pdf#view=FitH代码:https://github.com/Leavings...
原创
发布博客 2019.01.02 ·
3825 阅读 ·
6 点赞 ·
0 评论 ·
17 收藏

【Transformer模型】:Attention is all your need(附attention的代码)

tranformer已经火了好长一段时间了,一直只是只闻其名不知其意,特地看了attention is all your need。 这篇论文摒弃了传统encoder-decoder模型必须结合cnn或者rnn的固有模式,只用了attention模型,可谓大道至简。现在主流的序列转化模型都是基于端到端的encoder-decoder的RNN或者CNN网络结构模式。现在都是在该框架中引入了a...
原创
发布博客 2018.12.12 ·
4523 阅读 ·
4 点赞 ·
0 评论 ·
36 收藏
加载更多