PTA:7-2 汉密尔顿回路 (25 分)

本文介绍了一种判断给定回路是否为汉密尔顿回路的方法,并提供了具体的C++实现代码。通过构建图的邻接矩阵及路径记录数组,确保每个顶点仅被访问一次且回路闭合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目

著名的“汉密尔顿(Hamilton)回路问题”是要找一个能遍历图中所有顶点的简单回路(即每个顶点只访问 1 次)。本题就要求你判断任一给定的回路是否汉密尔顿回路。

输入格式:
首先第一行给出两个正整数:无向图中顶点数 N(2<N≤200)和边数 M。随后 M 行,每行给出一条边的两个端点,格式为“顶点1 顶点2”,其中顶点从 1 到N 编号。再下一行给出一个正整数 K,是待检验的回路的条数。随后 K 行,每行给出一条待检回路,格式为:

n V
​1
​​ V
​2
​​ ⋯ V
​n
​​

其中 n 是回路中的顶点数,V
​i
​​ 是路径上的顶点编号。

输出格式:
对每条待检回路,如果是汉密尔顿回路,就在一行中输出"YES",否则输出"NO"。

输入样例:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
输出样例:
YES
NO
NO
NO
YES
NO

二、相关知识

1.哈密顿回路:图中每个顶点只能遍历一次,最终回到原点。
2.判断:
 每个顶点遍历一次,出发点除外
 出发点=终点
3.解题思路:用矩阵来储存边,用另一个数组来记录是否经过此点

三、代码

#include<iostream>
#include<string.h>
using namespace std;
int main()
{
	int n,m;//节点数,边数 
	int x,y;//顶点坐标 
	int a[210][210],vis[210];//存储矩阵,路径记录数组
	cin>>n>>m;
	
	for(int i=0;i<m;i++)
	{
		//有边存在为1 
		cin>>x>>y;
		a[x][y]=a[y][x]=1;
	 } 
	 
	 int k;//待检验条数
	 int t,v;
	 cin>>k;
	 while(k--)
	 {
	 	int flag=1;//标志
		int start=0,pre=0;//开始和前驱点
		
		/*for(int h=0;h<210;h++)//初始化,开始都未经过给,即为0 
		vis[210]=0;*/
		memset(vis, 0, sizeof(vis));
		
		cin>>t;
		
		if(t!=n+1)//边数不等于顶点数加一 
		{

			flag=0;
		    /*cout<<t<<endl;
			cout<<n<<endl;
			cout<<"flag1=0"<<endl; */
		}
		
		
		for(int j=0;j<t;j++)//一条边一条边的检验 
		{
		
			cin>>v;
			if(j==0)
			{
				start=v;//j==0,则开始顶点记为v
			}
			else
			{
				if(a[pre][v]==0)//前一个点和此点之间没有路径 
				{
					flag=0;
				    /*cout<<"flag2=0"<<endl; */
				}

			 }
			 if(vis[v])
			 {
			 	if(v!=start||j<t-1)//最后一个点不等于第一个点
				 {
				 	flag=0;
				 	/*cout<<"flag3=0"<<endl;*/ 
				  } 
			 	
			  }
			  vis[v]=1;
			  pre=v; 
		 }
		 if(flag)
		 cout<<"YES"<<endl;
		 else
		 cout<<"NO"<<endl; 
	  } 
	  return 0;
	
 }

程序是蓝色的诗

### PTA 实验 7-2搜索 #### 题目描述 在一个有序数组中,给定目标值进行查。如果存在该目标值,则返回其索引;否则返回 `-1` 表明未到。 输入格式如下: - 第一行包含两个整数 `n` 和 `target`,别表示数组长度和待查的目标值。 - 接下来的一行包含 `n` 个升序排列的整数,代表数组中的元素。 输出格式为单个整数,即目标值的位置索引(假设第一个位置索引为 `0`),如果没有到则输出 `-1`[^3]。 #### 解题思路 为了高效地解决这个问题,可以采用经典的二算法来降低时间复杂度到 O(log n),而不是线性扫描整个列表。以下是具体的实现方法: 定义左右边界指针别为 `left=0` 和 `right=n-1`; 当左界不超过右界时循环执行以下操作: - 计算中间位置 `mid=(left+right)//2` - 如果位于 mid 的数值正好等于 target 则直接返回 mid 值作为结果 - 若当前区间内不存在此数,则依据比较情况调整新的搜索范围直到收敛或确认无解为止 - 当最终未能定位至确切匹配项时应报告失败并退出程序运行 ```python def binary_search(nums, target): left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] == target: return mid elif nums[mid] < target: left = mid + 1 else: right = mid - 1 return -1 ``` 对于特殊情况处理,比如空数组或者只有一个元素的情况,在正式进入主逻辑前应当先行检测以简化后续流程控制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

出云coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值