平行四边形边数

在一个平面内给定n个点,任意三个点不在同一条直线上,用这些点可以构成多少个平行四边形?一个点可以同时属于多个平行四边形。

Input

多组数据(<=10),处理到EOF。

每组数据第一行一个整数n(4<=n<=500)。接下来n行每行两个整数xi,yi(0<=xi,yi<=1e9),表示每个点的坐标。

Output

每组数据输出一个整数,表示用这些点能构成多少个平行四边形。

Sample Input
4
0 1
1 0
1 1
2 0
Sample Output
1

给n个点找出这n个点能组成多少个平行四边形。

题目条件里的任意三点不在同一直线很重要。我们知道平行四边形的两条对角线相交于两条线的中点,也就是说两条线段相交于两条线的中点就可以组成一个平行四边形。而且不会有共线的两条线段,所以求出相交于同一中点的线段的个数n,可组成的平行四边形的个数由组合公式可以知道为:n*(n-1)/2;

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<stdlib.h>
#include<cmath>
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
struct node{
	double x,y;
};
int cmp(node a,node b){
	if(a.x==b.x)
		return a.y<b.y;
	return a.x<b.x;
}

node a[2005],b[4000005];
int main()
{
	int n;
	while(scanf("%d",&n)!=EOF){
		for(int i=0;i<n;i++)
			scanf("%lf%lf",&a[i].x,&a[i].y);
		int k=0;
		for(int i=0;i<n;i++){
			for(int j=i+1;j<n;j++){
				b[k].x=(a[i].x+a[j].x)/2;
                b[k].y=(a[i].y+a[j].y)/2;
                k++;
			}
		}
		sort(b,b+k,cmp);
		int temp=1,ans=0;
		for(int i=1;i<k;i++){
            if(b[i-1].x==b[i].x&&b[i-1].y==b[i].y){
            	temp++;
			}
            else{
                ans+=temp*(temp-1)/2;
                temp=1;
            }
        }
		printf("%d\n",ans);
	}
	
	return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值