它们都是对表达式的记法,因此也被称为前缀记法、中缀记法和后缀记法。它们之间的区别在于运算符相对与操作数的位置不同:前缀表达式的运算符位于与其相关的操作数之前;中缀和后缀同理。
举例:
(3 + 4) × 5 - 6 就是中缀表达式
- × + 3 4 5 6 前缀表达式
3 4 + 5 × 6 - 后缀表达式
中缀表达式(中缀记法)
中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间。中缀表达式是人们常用的算术表示方法。
虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值。对计算机来说,计算前缀或后缀表达式的值非常简单。
前缀表达式(前缀记法、波兰式)
前缀表达式的运算符位于操作数之前。
前缀表达式的计算机求值:
从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 op 次顶元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。
例如前缀表达式“- × + 3 4 5 6”:
(1) 从右至左扫描,将6、5、4、3压入堆栈;
(2) 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素,注意与后缀表达式做比较),计算出3+4的值,得7,再将7入栈;
(3) 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈;
(4) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。
可以看出,用计算机计算前缀表达式的值是很容易的。
将中缀表达式转换为前缀表达式:
遵循以下步骤:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从右至左扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
(4-1) 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈;
(4-2) 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1;
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:
(5-1) 如果是右括号“)”,则直接压入S1;
(5-2) 如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最左边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。
例如,将中缀表达式“1+((2+3)×4)-5”转换为前缀表达式的过程如下:
扫描到的元素 | S2(栈底->栈顶) | S1 (栈底->栈顶) | 说明 |
5 | 5 | 空 | 数字,直接入栈 |
- | 5 | - | S1为空,运算符直接入栈 |
) | 5 | - ) | 右括号直接入栈 |
4 | 5 4 | - ) | 数字直接入栈 |
× | 5 4 | - ) × | S1栈顶是右括号,直接入栈 |
) | 5 4 | - ) × ) | 右括号直接入栈 |
3 | 5 4 3 | - ) × ) | 数字 |
+ | 5 4 3 | - ) × ) + | S1栈顶是右括号,直接入栈 |
2 | 5 4 3 2 | - ) × ) + | 数字 |
( | 5 4 3 2 + | - ) × | 左括号,弹出运算符直至遇到右括号 |
( | 5 4 3 2 + × | - | 同上 |
+ | 5 4 3 2 + × | - + | 优先级与-相同,入栈 |
1 | 5 4 3 2 + × 1 | - + | 数字 |
到达最左端 | 5 4 3 2 + × 1 + - | 空 | S1中剩余的运算符 |
后缀表达式(后缀记法、逆波兰式)
后缀表达式与前缀表达式类似,只是运算符位于操作数之后。
后缀表达式的计算机求值:
与前缀表达式类似,只是顺序是从左至右:
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 op 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。
例如后缀表达式“3 4 + 5 × 6 -”:
(1) 从左至右扫描,将3和4压入堆栈;
(2) 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素,注意与前缀表达式做比较),计算出3+4的值,得7,再将7入栈;
(3) 将5入栈;
(4) 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
(5) 将6入栈;
(6) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。
将中缀表达式转换为后缀表达式:
与转换为前缀表达式相似,遵循以下步骤:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从左至右扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
(4-1) 如果S1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
(4-2) 否则,若优先级比栈顶运算符的高,也将运算符压入S1(注意转换为前缀表达式时是优先级较高或相同,而这里则不包括相同的情况);
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:
(5-1) 如果是左括号“(”,则直接压入S1;
(5-2) 如果是右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最右边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式(转换为前缀表达式时不用逆序)。
例如,将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下:
扫描到的元素 | S2(栈底->栈顶) | S1 (栈底->栈顶) | 说明 |
1 | 1 | 空 | 数字,直接入栈 |
+ | 1 | + | S1为空,运算符直接入栈 |
( | 1 | + ( | 左括号,直接入栈 |
( | 1 | + ( ( | 同上 |
2 | 1 2 | + ( ( | 数字 |
+ | 1 2 | + ( ( + | S1栈顶为左括号,运算符直接入栈 |
3 | 1 2 3 | + ( ( + | 数字 |
) | 1 2 3 + | + ( | 右括号,弹出运算符直至遇到左括号 |
× | 1 2 3 + | + ( × | S1栈顶为左括号,运算符直接入栈 |
4 | 1 2 3 + 4 | + ( × | 数字 |
) | 1 2 3 + 4 × | + | 右括号,弹出运算符直至遇到左括号 |
- | 1 2 3 + 4 × + | - | -与+优先级相同,因此弹出+,再压入- |
5 | 1 2 3 + 4 × + 5 | - | 数字 |
到达最右端 | 1 2 3 + 4 × + 5 - | 空 | S1中剩余的运算符 |
因此结果为“1 2 3 + 4 × + 5 -”(注意需要逆序输出)。
编写Java程序将一个中缀表达式转换为前缀表达式和后缀表达式,并计算表达式的值。其中的toPolishNotation()方法将中缀表达式转换为前缀表达式(波兰式)、toReversePolishNotation()方法则用于将中缀表达式转换为后缀表达式(逆波兰式):
注:
(1) 程序很长且注释比较少,但如果将上面的理论内容弄懂之后再将程序编译并运行起来,还是比较容易理解的。有耐心的话可以研究一下。(2) 此程序是笔者为了说明上述概念而编写,仅做了简单的测试,不保证其中没有Bug,因此不要将其用于除研究之外的其他场合。
- package qmk.simple_test;
- import java.util.Scanner;
- import java.util.Stack;
- /**
- * Example of converting an infix-expression to
- * Polish Notation (PN) or Reverse Polish Notation (RPN).
- * Written in 2011-8-25
- * @author QiaoMingkui
- */
- public class Calculator {
- public static final String USAGE = "== usage ==\n"
- + "input the expressions, and then the program "
- + "will calculate them and show the result.\n"
- + "input 'bye' to exit.\n";
- /**
- * @param args
- */
- public static void main(String[] args) {
- System.out.println(USAGE);
- Scanner scanner = new Scanner(System.in);
- String input = "";
- final String CLOSE_MARK = "bye";
- System.out.println("input an expression:");
- input = scanner.nextLine();
- while (input.length() != 0
- && !CLOSE_MARK.equals((input))) {
- System.out.print("Polish Notation (PN):");
- try {
- toPolishNotation(input);
- } catch (NumberFormatException e) {
- System.out.println("\ninput error, not a number.");
- } catch (IllegalArgumentException e) {
- System.out.println("\ninput error:" + e.getMessage());
- } catch (Exception e) {
- System.out.println("\ninput error, invalid expression.");
- }
- System.out.print("Reverse Polish Notation (RPN):");
- try {
- toReversePolishNotation(input);
- } catch (NumberFormatException e) {
- System.out.println("\ninput error, not a number.");
- } catch (IllegalArgumentException e) {
- System.out.println("\ninput error:" + e.getMessage());
- } catch (Exception e) {
- System.out.println("\ninput error, invalid expression.");
- }
- System.out.println("input a new expression:");
- input = scanner.nextLine();
- }
- System.out.println("program exits");
- }
- /**
- * parse the expression , and calculate it.
- * @param input
- * @throws IllegalArgumentException
- * @throws NumberFormatException
- */
- private static void toPolishNotation(String input)
- throws IllegalArgumentException, NumberFormatException {
- int len = input.length();
- char c, tempChar;
- Stack<Character> s1 = new Stack<Character>();
- Stack<Double> s2 = new Stack<Double>();
- Stack<Object> expression = new Stack<Object>();
- double number;
- int lastIndex = -1;
- for (int i=len-1; i>=0; --i) {
- c = input.charAt(i);
- if (Character.isDigit(c)) {
- lastIndex = readDoubleReverse(input, i);
- number = Double.parseDouble(input.substring(lastIndex, i+1));
- s2.push(number);
- i = lastIndex;
- if ((int) number == number)
- expression.push((int) number);
- else
- expression.push(number);
- } else if (isOperator(c)) {
- while (!s1.isEmpty()
- && s1.peek() != ')'
- && priorityCompare(c, s1.peek()) < 0) {
- expression.push(s1.peek());
- s2.push(calc(s2.pop(), s2.pop(), s1.pop()));
- }
- s1.push(c);
- } else if (c == ')') {
- s1.push(c);
- } else if (c == '(') {
- while ((tempChar=s1.pop()) != ')') {
- expression.push(tempChar);
- s2.push(calc(s2.pop(), s2.pop(), tempChar));
- if (s1.isEmpty()) {
- throw new IllegalArgumentException(
- "bracket dosen't match, missing right bracket ')'.");
- }
- }
- } else if (c == ' ') {
- // ignore
- } else {
- throw new IllegalArgumentException(
- "wrong character '" + c + "'");
- }
- }
- while (!s1.isEmpty()) {
- tempChar = s1.pop();
- expression.push(tempChar);
- s2.push(calc(s2.pop(), s2.pop(), tempChar));
- }
- while (!expression.isEmpty()) {
- System.out.print(expression.pop() + " ");
- }
- double result = s2.pop();
- if (!s2.isEmpty())
- throw new IllegalArgumentException("input is a wrong expression.");
- System.out.println();
- if ((int) result == result)
- System.out.println("the result is " + (int) result);
- else
- System.out.println("the result is " + result);
- }
- /**
- * parse the expression, and calculate it.
- * @param input
- * @throws IllegalArgumentException
- * @throws NumberFormatException
- */
- private static void toReversePolishNotation(String input)
- throws IllegalArgumentException, NumberFormatException {
- int len = input.length();
- char c, tempChar;
- Stack<Character> s1 = new Stack<Character>();
- Stack<Double> s2 = new Stack<Double>();
- double number;
- int lastIndex = -1;
- for (int i=0; i<len; ++i) {
- c = input.charAt(i);
- if (Character.isDigit(c) || c == '.') {
- lastIndex = readDouble(input, i);
- number = Double.parseDouble(input.substring(i, lastIndex));
- s2.push(number);
- i = lastIndex - 1;
- if ((int) number == number)
- System.out.print((int) number + " ");
- else
- System.out.print(number + " ");
- } else if (isOperator(c)) {
- while (!s1.isEmpty()
- && s1.peek() != '('
- && priorityCompare(c, s1.peek()) <= 0) {
- System.out.print(s1.peek() + " ");
- double num1 = s2.pop();
- double num2 = s2.pop();
- s2.push(calc(num2, num1, s1.pop()));
- }
- s1.push(c);
- } else if (c == '(') {
- s1.push(c);
- } else if (c == ')') {
- while ((tempChar=s1.pop()) != '(') {
- System.out.print(tempChar + " ");
- double num1 = s2.pop();
- double num2 = s2.pop();
- s2.push(calc(num2, num1, tempChar));
- if (s1.isEmpty()) {
- throw new IllegalArgumentException(
- "bracket dosen't match, missing left bracket '('.");
- }
- }
- } else if (c == ' ') {
- // ignore
- } else {
- throw new IllegalArgumentException(
- "wrong character '" + c + "'");
- }
- }
- while (!s1.isEmpty()) {
- tempChar = s1.pop();
- System.out.print(tempChar + " ");
- double num1 = s2.pop();
- double num2 = s2.pop();
- s2.push(calc(num2, num1, tempChar));
- }
- double result = s2.pop();
- if (!s2.isEmpty())
- throw new IllegalArgumentException("input is a wrong expression.");
- System.out.println();
- if ((int) result == result)
- System.out.println("the result is " + (int) result);
- else
- System.out.println("the result is " + result);
- }
- /**
- * calculate the two number with the operation.
- * @param num1
- * @param num2
- * @param op
- * @return
- * @throws IllegalArgumentException
- */
- private static double calc(double num1, double num2, char op)
- throws IllegalArgumentException {
- switch (op) {
- case '+':
- return num1 + num2;
- case '-':
- return num1 - num2;
- case '*':
- return num1 * num2;
- case '/':
- if (num2 == 0) throw new IllegalArgumentException("divisor can't be 0.");
- return num1 / num2;
- default:
- return 0; // will never catch up here
- }
- }
- /**
- * compare the two operations' priority.
- * @param c
- * @param peek
- * @return
- */
- private static int priorityCompare(char op1, char op2) {
- switch (op1) {
- case '+': case '-':
- return (op2 == '*' || op2 == '/' ? -1 : 0);
- case '*': case '/':
- return (op2 == '+' || op2 == '-' ? 1 : 0);
- }
- return 1;
- }
- /**
- * read the next number (reverse)
- * @param input
- * @param start
- * @return
- * @throws IllegalArgumentException
- */
- private static int readDoubleReverse(String input, int start)
- throws IllegalArgumentException {
- int dotIndex = -1;
- char c;
- for (int i=start; i>=0; --i) {
- c = input.charAt(i);
- if (c == '.') {
- if (dotIndex != -1)
- throw new IllegalArgumentException(
- "there have more than 1 dots in the number.");
- else
- dotIndex = i;
- } else if (!Character.isDigit(c)) {
- return i + 1;
- } else if (i == 0) {
- return 0;
- }
- }
- throw new IllegalArgumentException("not a number.");
- }
- /**
- * read the next number
- * @param input
- * @param start
- * @return
- * @throws IllegalArgumentException
- */
- private static int readDouble(String input, int start)
- throws IllegalArgumentException {
- int len = input.length();
- int dotIndex = -1;
- char c;
- for (int i=start; i<len; ++i) {
- c = input.charAt(i);
- if (c == '.') {
- if (dotIndex != -1)
- throw new IllegalArgumentException(
- "there have more than 1 dots in the number.");
- else if (i == len - 1)
- throw new IllegalArgumentException(
- "not a number, dot can't be the last part of a number.");
- else
- dotIndex = i;
- } else if (!Character.isDigit(c)) {
- if (dotIndex == -1 || i - dotIndex > 1)
- return i;
- else
- throw new IllegalArgumentException(
- "not a number, dot can't be the last part of a number.");
- } else if (i == len - 1) {
- return len;
- }
- }
- throw new IllegalArgumentException("not a number.");
- }
- /**
- * return true if the character is an operator.
- * @param c
- * @return
- */
- private static boolean isOperator(char c) {
- return (c=='+' || c=='-' || c=='*' || c=='/');
- }
- }
== usage ==
input the expressions, and then the program will calculate them and show the result.
input 'bye' to exit.
input an expression:
3.8+5.3
Polish Notation (PN):+ 3.8 5.3
the result is 9.1
Reverse Polish Notation (RPN):3.8 5.3 +
the result is 9.1
input a new expression:
5*(9.1+3.2)/(1-5+4.88)
Polish Notation (PN):/ * 5 + 9.1 3.2 + - 1 5 4.88
the result is 69.88636363636364
Reverse Polish Notation (RPN):5 9.1 3.2 + * 1 5 - 4.88 + /
the result is 69.88636363636364
input a new expression:
1+((2+3)*4)-5
Polish Notation (PN):- + 1 * + 2 3 4 5
the result is 16
Reverse Polish Notation (RPN):1 2 3 + 4 * + 5 -
the result is 16
input a new expression:
bye
program exits