自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

sxj731533730

成功埋没过去,失败开拓未来。

  • 博客(440)
  • 资源 (2)
  • 收藏
  • 关注

原创 75、封装paddle ocr v5服务支持昇腾800 900 、800I A2、300I DUO卡推理识别

本文介绍了如何封装OCR服务以支持昇腾系列芯片推理识别。以800900服务器为例,基于已有博客内容开发Dockerfile文件,包含以下关键步骤:1) 使用Ubuntu 20.04基础镜像;2) 安装Python 3.11及相关依赖;3) 配置CANN工具包和内核;4) 设置环境变量和用户权限;5) 安装PaddleOCR模型并配置启动脚本。最终通过Docker容器化部署OCR服务,支持指定模型路径和监听端口参数启动服务。

2025-09-19 16:40:23 32

原创 74、在昇腾服务器 800I A2上迁移伏羲1.0/2.0大模型,并对比cpu和npu的精度

本文记录了在昇腾800IA2服务器上迁移伏羲1.0/2.0天气预测模型的过程。由于伏羲2.0缺少公开权重,作者使用自建权重进行推理测试。详细步骤包括:1)配置Docker镜像环境;2)创建包含昇腾设备映射的容器;3)安装必要的开发工具和Python依赖;4)设置SSH远程访问;5)准备推理工具链。该方法实现了模型环境的快速部署和隔离,支持在不同宿主机上的开箱即用。

2025-09-05 02:36:52 98

原创 89、昇腾服务器800 9000服务器进行镜像构建,然后使用pycharm访问镜像内部环境进行NPU代码开发

三、使用pycharm进入容器,重新设置启动镜像服务脚本,其中xxx为docker镜像内部的端口号,可以自定义,yyy为服务器登录的端口号需要根据登录的服务器定义,我这里一开始登录服务器是 ssh root@112.6.203.2 -p 18888。基本思想:昇腾服务器80 9000服务器进行镜像构建,然后使用pycharm访问镜像内部环境进行NPU代码开发。安装固件和设置环境变量,下载服务器800 9000服务器的cann-toolkit包 昇腾社区。二、创建容器 run.sh。

2025-09-02 08:44:56 140

原创 88、有人物联网W660使用MQTT协议向thingsboard发送指令,同时使用下发指令控制防水灯

摘要:本文介绍了基于W660 DTU设备和MQTT协议的水下灯控制系统实现方案。主要包括两个关键步骤:1)在阿里云平台开放1883端口;2)通过tingboard网站开通MQTT服务并进行客户端-服务器通信测试。系统通过MQTT协议实现对水下灯开关和亮度的远程控制,为水下照明设备提供了一种可靠的物联网解决方案。

2025-08-17 22:16:56 80

原创 17、迁移适配 读光-票证检测矫正模型mnn、ncnn、atlas800 9000模型推理

文章摘要:本文介绍了如何将读光-票证检测矫正模型迁移适配到MNN和NCNN模型框架。首先通过ModelScope下载并测试了原始PyTorch模型,展示了模型输出结果(包含多边形坐标、置信度分数和矫正后的图像数据)。测试过程中遇到了一些警告信息(如字符检测依赖缺失、预处理配置缺失等),但最终成功加载模型并完成推理。文章计划后续根据配置文件进行模型转换,将PyTorch模型转换为MNN/NCNN格式。(149字)

2025-08-07 18:12:55 296

原创 83、设置有人DTU设备USR-M100采集传感器数据,然后上传阿里云服务

一、首先将DTU设备USR-M100连接路由器上,然后使用python代码搜索同一局域网设备,基本思想:设置M100 采集传感器数据。查看自动获取ip网址状态。

2025-07-23 23:06:05 164

原创 73、C++/Python PaddleOCR-v5 部署mnn框架、ncnn框架、昇腾800 9000服务器 、Atalas 300I DUO卡 、Atalas 200DK

摘要:本文介绍了PaddleOCR-v5模型在MNN、NCNN、RK3588和昇腾310P3平台上的部署方法。首先通过Python脚本完成模型转换,为后续在不同硬件平台上的部署奠定基础。该流程展现了跨平台部署的可行性,为OCR技术在不同设备上的应用提供了参考方案。

2025-07-15 13:33:25 194

原创 72、yolov11s-obb旋转目标检测部署MNN、NCCN、rk3588、昇腾310P3、昇腾800 9000服务器

文章摘要:本文介绍了将YOLOv11-OBB旋转目标检测模型部署到RK3588开发板的过程。首先需要确保电脑已配置RKNN-Toolkit2工具包,能够支持官方模型转换。通过调用Ultralytics库加载预训练的YOLO11-OBB模型,使用export方法将PyTorch模型转换为ONNX格式,最终输出为RK3588支持的RKNN模型格式。该方法为在嵌入式设备上实现高效的旋转目标检测提供了解决方案。

2025-07-12 11:20:06 159

原创 71、usearch向量化数据库配合目标检测和特征向量点使用

摘要:本文介绍了使用Python和C++实现向量相似性搜索的流程。首先通过Python脚本测试USearch库的功能,包括创建索引、添加特征向量和相似性搜索。测试使用了随机生成的128维向量,成功返回了最相似结果。随后计划用C++重写实现相同功能,但未展示具体代码。整个流程体现了从Python原型验证到C++性能优化的开发思路,适用于需要高效向量搜索的应用场景。

2025-07-05 16:21:30 96

原创 82、yolov11检测模型迁移瑞芯微和使用昇腾设备300i DUO卡推理

本文介绍了使用昇腾设备进行分割推理的测试流程,包括两种测试方式(cann+onnx和om)。首先验证300iDUO卡的可用性,随后创建Docker镜像和容器以搭建独立环境。通过从指定仓库拉取Ubuntu 20.04镜像,创建容器并映射目录。进入容器后安装必要组件(Python3、GCC等)和系统工具(pciutils、net-tools等),为后续模型转换和迁移做准备。整个流程旨在构建可交付给第三方的标准化测试环境。

2025-06-13 22:03:38 328

原创 81、使用有人物联网W660设备DTU控制水下灯光控制,控制方式TCP控制

本文介绍了济南有人DTU控制水下灯光的基本操作步骤。首先需正确连接DTU设备的供电模块和RS-485接口(红线接A口,绿线接B口),确保供电正常。然后通过有人官方手册,访问后台服务http://192.168.1.1/cgi-bin/luci,在连接DTU的WiFi后使用AP模式进行灯光调试和控制。若设备供电后未工作,需检查火线和零线是否接反。

2025-06-01 21:19:52 356

原创 80、昇腾系列服务器/昇腾系列推理卡/昇腾系列嵌入式开发板+FastGPT+one api部署DeepSeek-R1-Distill-Qwen-32BW8A8+RAG本地模型知识库和负载均衡双实例

基本思想:承接上一篇博客,适配fastgpt,假设你已经配置了docker和docker-compose包,目标设备仍然是昇腾服务器,且mindie服务和分词服务也已经启动,开始构建FastGPT环境吧。先拉取arm64的镜像,进行x86镜像替换。第一步:one-api部署。

2025-03-06 21:16:16 564

原创 79、昇腾系列服务器/昇腾系列推理卡/昇腾系列嵌入式开发板+Dify+one api部署DeepSeek-R1-Distill-Qwen-32BW8A8+RAG本地模型知识库和负载均衡双实例

阶段,安装过程缺什么,,在docker外面git下源码,进入容器内部进行量化,这里的容器建议在创建个8卡的容器,双卡容器量化会显示npu显存不够,除非你用cpu转模型,我就懒得创建容器了,使用cpu量化吧,巨慢;创建容器,进入容器,计划使用两张昇腾NPU卡推理DeepSeek-R1-Distill-Qwen-32B的W8A8模型,所以构建的容器用两张卡,选6、7卡吧,0-6号卡可以跑文本嵌入模型、重排序模型;直接进入量化阶段,在容器外面操作即可,环境不用管,因为系统已经默认配置了环境,直接跳到。

2025-02-23 19:28:03 4971

原创 70、训练yolov11-pose关键点训练、部署TensorRT&NCNN部署&&昇腾310I Duo卡&昇腾Atlas 200DK

在/home/ubuntu/ultralytics/ultralytics/cfg/datasets创建fish.yaml文件。基本思想:进行yolov11-pose关键点训练,进行简单记录,纯粹为了方便年使用查找。二、下载 代码,修改配置文件和类别和数据配置文件关键点个数。文件结构,train里面是图片和转换的txt 依次类推。一、使用labelme 标注关键点进行数据集转换。

2025-01-28 20:10:46 476

原创 78、使用爱芯派2_AX630C开发板 3.2T高有效算力 低功耗 支持AI-ISP真黑光实验

五、将模型改名成yolov5s.axmodel,替换/home/ubuntu/ax620e_bsp_sdk/msp/sample/vin_ivps_engine_venc_rtsp/models里面的模型替换转换的模型,拷贝编译好的代码到开发板推理之前,先丢个模型和图片到这个文件夹×/bin,一个为了测试一下模型是否可以用,一个为了推流并进行推理测试,推流文件名可以和原来的保持一致。这个也改了一起测,改成两类,可以先用这个例子单独测试一下,在测推流代码。第一步需要连接屏幕,将wifi连接上网,进行开发。

2025-01-02 10:46:51 745

原创 77、将adaface的mtcnn模型npy文件转成atlas310p模型,并进行推理

新建立一个export_onnx.py文件文件路径 /home/ubuntu/AdaFace/face_alignment/mtcnn_pytorch/src/export_onnx.py。一、按照readme进行测试mtcnn模型,将main.py代码添加到/home/ubuntu/AdaFace/face_alignment/mtcnn_pytorch/目录下。可以看出非常接近,优化一下代码,完全独立官方的逻辑代码,使用但文件推理,方便在atlas设备上推理。

2024-12-26 16:36:11 290

原创 76、适配Adaface模型到昇腾310p设备上

基本思想:将Adaface适配上310p设备上。

2024-12-22 22:53:26 253

原创 75、适配yolov-face模型到昇腾310p设备上

基本思想:适配yolov11-face模型到昇腾设备上。

2024-12-18 15:36:20 744

原创 74、docker镜像制作上传/下载到阿里云

基本思想:简单学习一下如何制作镜像和上传下载到私有阿里云,然后构建一个gpu的训练/推理环境,以备后续使用。

2024-12-05 21:34:16 593

原创 16、斑马设备的ppocer-4支持文字旋转识别和opencv-mobile中文显示mnn/ncnn双版本

基本思想:手上有个斑马设备,是客户的,简单记录一下开发过程和工程项目,同时记录跟着android小哥学习了很多anroid的知识,转ppocr-4参考之前的ppocr-3转换即可,整个框架仍然使用c++ ncnn jni框架推理和现实,图像库使用opencv-mobile。一、首先转paddle-cor-4 到ncnn的框架上,进行推理,这里使用ncnn+mingw+paddle-ocr进行推理,转换模型参考paddle-ocr3即可。二、android的工程项目。

2024-09-23 21:23:28 443

原创 73、结合无人机进行rk3588oak-lite跟踪目标物体进行识别、跟踪

搭建仿真转换模型环境,主要python版本和我下载的rknn2的版本。截取shape节点,输出模型。so库也要对应转模型的whl。其中安装的whl版本。

2024-09-17 17:59:57 1226

原创 71、哪吒开发板试用&结合oak深度相机进行评测

一、 我们先刷个刷成linux系统,测试比较方便,虽然window+python代码也可以开发,但是这不是为了获奖吗,搞点难度的ubuntu+c++推理,同时还为了测试灰仔的ncnn吗,勉为其难,把正版window 系统刷掉吧,哈哈哈。基本思想:收到intel的开发板-小挪吒,正好手中也有oak相机,反正都是openvino一套玩意,进行评测一下,竟然默认是个window系统,哈哈。首先在自己的宿主机器上ubuntu20.04配置环境,转一下oak所需要的模型,设备的系统openvino版本太高。

2024-09-15 17:15:36 294

原创 69、ncnn学习onnx2ncnn不支持带三维算子相乘gemm/repeat转换方法学习

测试结果,因为设置的随机生成数,只要torch onnx ncnn对应上即可。基本思想:学习不支持带channel维度的Mat相乘。二、repeat不支持onnx2ncnn使用。转一下onnx2ncnn。然后修改param结构。转换onnx显示不支持。参看ncnn的算子支持。其中的param结果。转的错误的param。

2024-07-19 15:27:00 1413

原创 68、ncnn学习onnx2ncnn不支持五维算子squeeze/gather转换方法学习

有了上一篇博客的学习,ncnn的squeeze不支持4d操作, 将squeeze 改为reshape 我们看一下ncnn的operator 的reshape。修改的param,修改了reshape维度、crop维度提取步长、以及添加reshape对齐了onnx 输入。基本思想:继续构建小模型,学习ncnn的onnx2ncnn的不支持算子学习。转ncnn没有错误,但是推理结果是不正确的,请see。一、四、五维度转换squeeze不支持。查看一下param的内部结构。进行onnx进行简化。

2024-07-12 17:56:07 399

原创 67、ncnn学习onnx2ncnn不支持五维算子reshape/transpose转换方法学习

一点点剖析ncnn的不支持,这里先不考虑batch>1的情况 输入维度是 1x3x6x6 使用reshape转成1x6x2x3x3 对应ncnn的内存布局是cdhw 所以修改param结果为。一、例子一,先造个五维度的reshape转换,ncnn的onnx2ncnn不支持转换,参考ppocr_4算子。基本思想:学习ncnn转模型集锦,仅在onnx2ncnn使用, 先不谈pnnx。执行生成pt使用onnx转一下,我用mingw+window转一下。测试结果,ncnn不支持五维度输出,直接崩溃。

2024-07-11 10:47:20 468

原创 72、记录一下jetson nano 部署CSI摄像头+关键点识别代码

基本思想:使用csi摄像头进行画面取帧,使用v7进行目标检测,使用rtmpose进行关键点检测。刷机手册参考官网、搜素ip方法。三、测试csi摄像头。

2024-06-08 18:56:22 660

原创 84、评测OrangePi AIpro开发板和USB CAMERA&OAK视频解码+推理+编码+推流测试

第一步:系统刷机,参考官方吧,懒得刷机了,参考官方手册即可链接:https://pan.baidu.com/s/1umXM3ir-5adfjC3ZyjjJ4A?三、先测试一下环境,是否可用,ide使用clion,需要添加环境变量在clion中,测试我上一篇对应博客和模型,模型我共享在百度云盘了。二、因为我习惯了华为官方的aclite库,我发现官方给我刷的系统没有,那我自己编译一下吧。连接账号 root 密码:Mind@123。然后就参考我这篇博客修改和编译即可。使用python搜索同一网段的ip。

2024-05-26 23:13:04 721

原创 70、测试CPE+POE+OAK设备

二、然后测试python的oak代码,c++我就不测试了,这里附录一个python搜索本地ip的地址,可以用于c++ 的oak设置开发。一、首先购买双CPE设备,简称网桥,进行设置,设置方式采用网线直连的方式进行ip设置,保证其主网桥和子网桥位于局域网属于同一网段内。基本思想:需要部署测试CPE+POE+OAK设备,仅此而已。三、测试python的oak代码。

2024-05-17 21:55:11 284

原创 69、oak和华为atlas 200dk A2进行编解码测试

基本思想:将oak深度相机与atlas 200dk A2进行结合,测试其dvpp的编解码能力。

2024-05-06 19:49:18 650

原创 68、ubunut/window使用海康彩色工业相机

基本思想:刚买了一块海康工业相机,需要在jetson上调用使用,所以记录一下配置方法,然后结合开发使用。一、先使用window软件调用一下,是否可用。

2024-03-30 12:43:31 909

原创 67、yolov8目标检测和旋转目标检测算法batchsize=1/6部署Atlas 200I DK A2/orangepi AI pro开发板上

基本思想:需求部署yolov8目标检测和旋转目标检测算法部署atlas 200dk 开发板上。配置pycharm professional。使用huawei板子进行转换模型。

2024-03-29 12:45:53 1274

原创 66、将同图片下的多个不同类别的xml标注文件合并成一个xml标注文件-labelImg格式

基本思想:手中有一套抽烟的数据集是labelimg格式,但是没有人物标注的数据集,因此使用自动化标注脚本将图片过滤一边,进行生成labelimg文件,只含有80类别的人物标注xml,然后使用脚本将生成标注的人物xml和手中有的抽烟xml进行合并,生成一份xml文件。

2024-03-20 15:58:34 630

原创 65、将mmpose的RTmpose适配华为Atlas 200dk A2,同时控制GSM发送短信和拨打电话

基本思想:适配关键点模型到华为昇腾芯片上,同时对针对性的动作做出响应。

2024-03-14 21:45:45 494

原创 64、使用orangepi 5 plus进行目标识别,然后使用蜂鸣器进行播报

基本思想:获得一块新的rk3588芯片,使用rk3588芯片做个简单的目标检测,调用usb摄像头,然后进行gpio引脚调用,然后没了。一、首先进行刷机,参考手册,不做详细介绍,未使用emc刷机。刷机完成:orangepi/orangepi登陆。然后配置环境,安装必要的库。

2024-03-10 16:48:26 809

原创 18、ubutnu20.04使用RTX3060硬件进行视频编解码+推流

一、进行nv-codec-headers配置。二、进行video_codec_sdk配置。基本思想:先进行环境配置,系统环境如下。三、进行ffmpeg编译。

2024-02-26 09:23:40 1493

原创 1、gstreamer基础教程-播放视频

基本思想:只是单纯记录一下官方的例子,具体信息看官方手册,本菜也是参考官方手册学习。

2024-01-28 17:13:47 788

原创 64、ubuntu使用c++/python调用alliedvision工业相机

基本思想:需要使用linux系统调用alliedvisio工业相机完成业务,这里只做驱动相机调用,具体不涉及业务开发。一、先用软件调用一下。

2024-01-25 19:04:57 942

原创 66、ubutnu20.04上进行yolov8区域训练检测和条形码识别

基本思想:需要使用爬虫代码,预先爬虫一些数据和标注,这里只做简单记录,不做具体意图探讨。一、爬虫数据,然后进行部分筛选。

2023-12-16 15:51:19 765

原创 65、记录RTMpose转TensorRT过程,测试c++/python

不知道为啥,我转失败了,但是生成了end2end.onnx模型,无关紧要,然后使用TensorRT自带的工具转engine。基本思想:记录一下,官方的mmpose+custom_mmdeploy中的RTmpose转TensorRT过程,纯粹记录。一、下载mmpose官方代码,然后配置环境,参考官方配置即可。cuda和cudnn的版本,参考。转成功之后,然后找个代码测测,使用clion测试,改了CMakeLists.txt。main.cpp直接找了个图片,标注了一个人的位置,然后跑一下关键点检测。

2023-12-06 08:59:57 727

原创 1、cuda的学习记录Chapter01

基本思想:学习一下cuda编程,随手记录一下 如何使用grind block thread 线程块和编号的概念和应用方法。一、使用工具clion+ubuntu。

2023-11-23 15:33:29 251

2017最全的vivado license

历史最全的vivdo license,压缩包包含:(后期会定时更新) xilinx_ise_vivado.lic Vivado_license_2016.4.lic xilinx_ise.lic Vivado_2016.4_license_2037.lic xilinx.lic ise_vivado_2014_2.lic 2014Xilinx.lic 2016_Vivado_license.lic

2017-03-19

opencv (linux版本)

opencv 脚本安装

2017-04-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除