转载自 http://blog.csdn.net/wonengguwozai/article/details/52724409
加一句,一些make runtest中的测试就算不通过也不会耽误使用的,一般只要make all , make pycaffe 和 make test不出错即可
编译caffe源码的大致过程如下:
make all
make pycaffe
make test
make runtest
小编在第N次搭建Caffe环境时,前面几步都很顺利,到最后一步make runtest这里出了问题。本来看着动漫等着make runtest运行完就去Happy,看到报错整个人都不好了。报错内容大致是这样的:
[----------] Global test environment tear-down
[==========] 906 tests from 133 test cases ran. (72964 ms total)
[ PASSED ] 899 tests.
[ FAILED ] 7 tests, listed below:
[ FAILED ] SGDSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
[ FAILED ] AdaGradSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
[ FAILED ] NesterovSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
[ FAILED ] AdaDeltaSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
[ FAILED ] AdamSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
[ FAILED ] RMSPropSolverTest/0.TestSnapshot, where TypeParam = caffe::CPUDevice<float>
[ FAILED ] RMSPropSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
废话已经说了不少,给大家提供三种解决方案。
1.如果提示:
[ FAILED ] RMSPropSolverTest/0.TestSnapshotShare, where TypeParam = caffe::GPUDevice<float>
注意,和上面不同,这里的报错信息里面显示的是“GPUDevice”而不是“CPUDevice”,这种情况可能是因为配置了多显卡环境,可以使用安装CUDA时运行./deviceQuery时标注的0号GPU("Device 0")跑跑测试试试看。使用如下命令:
export CUDA_VISIBLE_DEVICES=0
然后重新make runtest
2.当提示CPU错误时,如下:
[ FAILED ] AdamSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
如果使用了Intel MKL作为BLAS,可能是Intel MKL的浮点数计算功能没有设置正确。使用如下命令:
export MKL_CBWR=AUTO
然后重新make runtest
3.
当提示CPU错误时,如下:
[ FAILED ] AdamSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
而且使用第二步中的命令完全不起作用时,建议使用Atlas替换Intel MKL。
Ubuntu中使用命令:
sudo apt-get install libatlas-base-dev
安装
。Atlas
修改Makefile.config,
gedit Makefile.config
把 BLAS := mkl 改为 BLAS := atlas ,保存后退出。
重新编译make runtest即可。
另外,如果以上步骤都不起作用,可以试试换一个低版本的Boost库。目前明确Boost1.55.0木有问题。
注:网上有人这么说,但是我觉得这个报错和Boost版本木有关系,我一开始用Boost1.58.0,报错,换成Boost1.55.0,还是报错,换成最新的Boost1.61.0,依然报错。
最后用的是上面的方案三解决的问题。最后使用的Boost版本是Boost1.61.0。如果大家想换换版本换换心情,以下是步骤:
首先:(卸载已经安装的Boost库,只适用于安装Boost库时使用的是命令sudo apt-get install libboost-all-dev的情况。源码安装的删除方法还不明确。)
sudo apt-get autoremove libboost-all-dev
然后按照以下步骤操作(源码安装Boost1.55.0,因为Ubuntu16.04使用apt-get install安装的是Boost1.58.0,所以这里用源码安装。):(步骤直接粘贴过来的,侵删。)
http://www.cnblogs.com/atomic-pulse/p/3862979.html
1. 手动下载Boost库1.55。
wget -O boost_1_55_0.tar.gz http://sourceforge.NET/projects/boost/files/boost/1.55.0/boost_1_55_0.tar.gz/download
tar xzvf boost_1_55_0.tar.gz
cd boost_1_55_0/
2. 安装依赖库。(建议跳过这一步,万一把GCC升级到高版本可能CUDA-8.0不支持。CUDA-8.0目前支持GCC 5.3及以下。我使用的是CUDA-8.0.27, GCC 5.3.0)
sudo apt-get update
sudo apt-get install build-essential g++ Python-dev autotools-dev libicu-dev build-essential libbz2-dev
3. 用Boost库的bootstrap方式安装。
./bootstrap.sh --prefix=/usr/local
4. 如果需要使用MPI,就得设置user-config.jam文件中标志。
user_configFile=`find $PWD -name user-config.jam`
echo "using mpi ;" >> $user_configFile
5. 查询CPU核的数目。
n=`cat /proc/cpuinfo | grep "cpu cores" | uniq | awk '{print $NF}'`
6. 并行安装Boost库。
sudo ./b2 --with=all -j $n install
7. 如果系统中/usr/local/lib不存在,就需要添加到LD LIBRARY PATH中。
sudo sh -c 'echo "/usr/local/lib" >> /etc/ld.so.conf.d/local.conf'
8. 重置ldconfig。
sudo ldconfig
小编配置的是Ubuntu16.04 + CUDA8.0 + cudnn8.0 + Quadro K2200/PCIe/SSE2 + Caffe,网上能搜到的关于这个错误的信息很少,这里给大家搜集一下,希望有帮助!
另外,参考资料:
test_gradient_based_solver fails#3109
https://github.com/BVLC/caffe/issues/3109
最后加一句,一些make runtest中的测试就算不通过也不会耽误使用的,一般只要make all , make pycaffe 和 make test不出错即可。
关于安装Caffe时遇到的问题,去Google搜索比去Baidu搜索靠谱很多。上不去Google可以去Github上搜索。先登录,然后直接搜索报错信息,在搜索结果的"Issues"一栏中或许有答案。
以上均为转载