编译caffe源码时,make runtest问题解决方案:[ FAILED ] NesterovSolverTest/0.TestSnapshotShare, where TypeParam =

转载自  http://blog.csdn.net/wonengguwozai/article/details/52724409

加一句,一些make runtest中的测试就算不通过也不会耽误使用的,一般只要make all , make pycaffe 和 make test不出错即可


编译caffe源码的大致过程如下:

make all

make pycaffe

make test

make runtest

小编在第N次搭建Caffe环境时,前面几步都很顺利,到最后一步make runtest这里出了问题。本来看着动漫等着make runtest运行完就去Happy,看到报错整个人都不好了。报错内容大致是这样的:

[----------] Global test environment tear-down
    [==========] 906 tests from 133 test cases ran. (72964 ms total)
    [  PASSED  ] 899 tests.
    [  FAILED  ] 7 tests, listed below:
    [  FAILED  ] SGDSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
    [  FAILED  ] AdaGradSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
    [  FAILED  ] NesterovSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
    [  FAILED  ] AdaDeltaSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
    [  FAILED  ] AdamSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
    [  FAILED  ] RMSPropSolverTest/0.TestSnapshot, where TypeParam = caffe::CPUDevice<float>
    [  FAILED  ] RMSPropSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
废话已经说了不少,给大家提供三种解决方案。

1.如果提示:

[  FAILED  ] RMSPropSolverTest/0.TestSnapshotShare, where TypeParam = caffe::GPUDevice<float>
注意,和上面不同,这里的报错信息里面显示的是“GPUDevice”而不是“CPUDevice”,这种情况可能是因为配置了多显卡环境,可以使用安装CUDA时运行./deviceQuery时标注的0号GPU("Device 0")跑跑测试试试看。使用如下命令:

export CUDA_VISIBLE_DEVICES=0

然后重新make runtest

2.当提示CPU错误时,如下:

[  FAILED  ] AdamSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>
如果使用了Intel MKL作为BLAS,可能是Intel MKL的浮点数计算功能没有设置正确。使用如下命令:

export MKL_CBWR=AUTO

然后重新make runtest

3.当提示CPU错误时,如下:

[  FAILED  ] AdamSolverTest/0.TestSnapshotShare, where TypeParam = caffe::CPUDevice<float>

而且使用第二步中的命令完全不起作用时,建议使用Atlas替换Intel MKL。

Ubuntu中使用命令:

sudo apt-get install libatlas-base-dev

安装Atlas

修改Makefile.config,

gedit Makefile.config

把 BLAS := mkl 改为 BLAS := atlas ,保存后退出。

重新编译make runtest即可。


另外,如果以上步骤都不起作用,可以试试换一个低版本的Boost库。目前明确Boost1.55.0木有问题。

注:网上有人这么说,但是我觉得这个报错和Boost版本木有关系,我一开始用Boost1.58.0,报错,换成Boost1.55.0,还是报错,换成最新的Boost1.61.0,依然报错。

最后用的是上面的方案三解决的问题。最后使用的Boost版本是Boost1.61.0。

如果大家想换换版本换换心情,以下是步骤:

首先:(卸载已经安装的Boost库,只适用于安装Boost库时使用的是命令sudo apt-get install libboost-all-dev的情况。源码安装的删除方法还不明确。)

sudo apt-get autoremove libboost-all-dev

然后按照以下步骤操作(源码安装Boost1.55.0,因为Ubuntu16.04使用apt-get install安装的是Boost1.58.0,所以这里用源码安装。):(步骤直接粘贴过来的,侵删。)


Ubuntu 12.04升级Boost库至1.55

http://www.cnblogs.com/atomic-pulse/p/3862979.html

1. 手动下载Boost库1.55。

 

        wget -O boost_1_55_0.tar.gz http://sourceforge.NET/projects/boost/files/boost/1.55.0/boost_1_55_0.tar.gz/download

 

        tar xzvf boost_1_55_0.tar.gz

 

        cd boost_1_55_0/

 

2. 安装依赖库。(建议跳过这一步,万一把GCC升级到高版本可能CUDA-8.0不支持。CUDA-8.0目前支持GCC 5.3及以下。我使用的是CUDA-8.0.27, GCC 5.3.0

 

        sudo apt-get update

 

        sudo apt-get install build-essential g++ Python-dev autotools-dev libicu-dev build-essential libbz2-dev

 

3. 用Boost库的bootstrap方式安装。

 

        ./bootstrap.sh --prefix=/usr/local

 

4. 如果需要使用MPI,就得设置user-config.jam文件中标志。

 

        user_configFile=`find $PWD -name user-config.jam`

 

        echo "using mpi ;" >> $user_configFile

 

5. 查询CPU核的数目。

 

        n=`cat /proc/cpuinfo | grep "cpu cores" | uniq | awk '{print $NF}'`

 

6. 并行安装Boost库。

 

        sudo ./b2 --with=all -j $n install

 

7. 如果系统中/usr/local/lib不存在,就需要添加到LD LIBRARY PATH中。

 

        sudo sh -c 'echo "/usr/local/lib" >> /etc/ld.so.conf.d/local.conf'

 

8. 重置ldconfig。

 

        sudo ldconfig



小编配置的是Ubuntu16.04 + CUDA8.0 + cudnn8.0 + Quadro K2200/PCIe/SSE2 + Caffe,网上能搜到的关于这个错误的信息很少,这里给大家搜集一下,希望有帮助!

另外,参考资料:

test_gradient_based_solver fails#3109

https://github.com/BVLC/caffe/issues/3109


最后加一句,一些make runtest中的测试就算不通过也不会耽误使用的,一般只要make all , make pycaffe 和 make test不出错即可。

关于安装Caffe时遇到的问题,去Google搜索比去Baidu搜索靠谱很多。上不去Google可以去Github上搜索。先登录,然后直接搜索报错信息,在搜索结果的"Issues"一栏中或许有答案。


以上均为转载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值