wonengguwozai
码龄7年
  • 1,325,188
    被访问
  • 216
    原创
  • 2,543
    排名
  • 1,055
    粉丝
关注
提问 私信

个人简介:欢迎爱技术的同行交流

  • 加入CSDN时间: 2015-06-17
博客简介:

wonengguwozai的博客

博客描述:
从事计算机视觉、深度学习相关研究
查看详细资料
  • 5
    领奖
    总分 1,187 当月 13
个人成就
  • 获得495次点赞
  • 内容获得140次评论
  • 获得1,236次收藏
创作历程
  • 6篇
    2022年
  • 15篇
    2021年
  • 20篇
    2020年
  • 64篇
    2019年
  • 48篇
    2018年
  • 66篇
    2017年
  • 112篇
    2016年
  • 1篇
    2015年
成就勋章
TA的专栏
  • makefile
    5篇
  • 推荐杂谈
    3篇
  • hive/sql
    10篇
  • C++相关
    56篇
  • linux 相关
    24篇
  • 深度学习库相关
    30篇
  • 机器学习与深度学习理论1
    20篇
  • 机器学习与深度学习理论2
    12篇
  • 检测与识别
    9篇
  • 图像处理
    16篇
  • theano相关
    4篇
  • MATLAB相关
    13篇
  • Python相关
    36篇
  • 技术杂烩
    4篇
  • caffe
    22篇
  • php网站开发
    4篇
  • 深度学习中的科普
    9篇
  • Google库pb_glog_gflags
    6篇
  • 刷刷题
    61篇
  • 设计模式
    12篇
兴趣领域 设置
  • 人工智能
    pytorch图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

cmake2:写CmakeList文件的常见命令和函数

1、cmake文件的常见内置变量这里转如下链接2、cmake中的include命令:作用是加载并执行该命令后的cmake对象或文件(想象成类似c++内联函数调用,文件内容直接替换include命令后的标记)。如项目中依赖opencv,可以将opencv的cmake文件include进来。3、add_library:将指定的源文件生成链接文件,然后添加到工程中去add_library(<name> [STATIC | SHARED | MODULE] [EXCLUD
原创
发布博客 2022.04.16 ·
2562 阅读 ·
0 点赞 ·
0 评论

cmake1:如何编写CMakeLists.txt

注:转载自:链接;该作者的cmake系列都很好,值得一看。如何编写CMakeLists.txt文件CMakeLists.txt 文件大小写不敏感大型项目的根目录和子目录都会有这个文件cmake_minimum_required( VERSION 2.8 )这是声明要求的cmake编译器的最低版本终端输入 cmake -version 可查看cmake的版本project(slam)这是声明cmake工程名字project(slam VERSION 0.0.1)还可以增加版本号.
转载
发布博客 2022.04.16 ·
46 阅读 ·
0 点赞 ·
0 评论

git submodule的简单介绍(转载)

在软件开发过程中,通常我们会遇到有一些通用的部分希望抽取出来做成一个公共库的情况,比如安卓和IOS都通用的H5页面。而公共代码库的版本管理是个麻烦的事情。幸运的是,万能的Git有个叫子模组(git submodule)的命令完美地帮我们解决了这个问题。添加子模块为当前工程添加submodule,命令如下:git submodule add 仓库地址 路径其中,仓库地址是指子模块仓库地址,路径指将子模块放置在当前工程下的路径。注意:路径不能以 / 结尾(会造成修改不生效)、不能是现有工程已有的目录(
转载
发布博客 2022.04.11 ·
29 阅读 ·
0 点赞 ·
0 评论

SMPL: A Skinned Multi-Person Linear Model

转载讲解较好的文章:1、链接12、链接23、文本pdf
转载
发布博客 2022.03.06 ·
34 阅读 ·
0 点赞 ·
0 评论

Xcode使用OpenCV访问Mac摄像头权限问题

这里记录下Xcode使用OpenCV访问Mac摄像头权限的解决方法:1、首先配置对应的info.plist文件右键项目文件-》new file->选择默认的property file-〉命名文件名(如Info.plist)打开创建的文件(以property list的方式),添加对应的摄像头访问权限(加入键Privacy - Camera Usage Description,值为YES)然后保存。2、放置info.plist文件到正确位置(重要)刚刚创建的.plist文件默认放置在xcode工
原创
发布博客 2022.02.27 ·
3652 阅读 ·
0 点赞 ·
0 评论

世界坐标系、相机坐标系、图像坐标系之间的关系

转载文章:https://www.cnblogs.com/gary-guo/p/6553155.html?share_token=5d357f6f-8321-43ee-8e90-85636d472643&tt_from=copy_link&utm_source=copy_link&utm_medium=toutiao_android&utm_campaign=client_share?=一、四个坐标系简介和相互转换相机模型为以后一切标定算法的关键,只有透彻的理解了,对以后
转载
发布博客 2022.02.15 ·
550 阅读 ·
0 点赞 ·
0 评论

脑暴中的想法

二分类对模糊效果不好:1、增加个图像复原任务(变成multitask形式)让分类获得好的特征 2、模型忽略了较浅的特征,模型输入除图像外加入一些手工特征如har r,LBP,candy,或增强的核。
原创
发布博客 2021.09.27 ·
46 阅读 ·
0 点赞 ·
0 评论

24点问题_快手

问题描述:给玩家4张牌,每张牌牌面值在1~13之间,允许其中有数值相同的牌。采用加、减、乘、除四则运算,允许中间运算存在小数,并且可以使用括号,但每张牌只能使用一次,尝试构造一种表达式,使其运算结果为24.如输入:3 3 7 7  输出:(((3)/(7))+(3))*(7)实现思路遍历所有可能的组合(对四个运算符在三个位置所有排列方式,非全排列(四个字符,三个位置)),然后对运算符的全排列的每一种形式与四个数字串联起来构成一个表达式,对这个表达式通过不同加括号的方式(分治法求解)求取对应表达式.
原创
发布博客 2021.03.25 ·
57 阅读 ·
0 点赞 ·
0 评论

c++理论相关知识点_Aibee

1. vector的实现原理(详细含代码解析可参照:https://blog.csdn.net/qq_36534818/article/details/76559835)* 内部实现如图:* vector的数据安排及操作方式与array非常相似。两者的唯一差别在于空间运用的灵活性。array是静态空间,一旦配置好了就不能改变了,如果程序需要一个更大的array,只能自己再申请一个更大的array,然后将以前的array中的内容全部拷贝到新的array中。vector是动态空间,随着元素的加入,它
原创
发布博客 2021.03.25 ·
87 阅读 ·
0 点赞 ·
0 评论

leetcode_152_乘积最大子数组(快手)

题目:给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。示例 1:输入: [2,3,-2,4]输出: 6解释: 子数组 [2,3] 有最大乘积 6。示例 2:输入: [-2,0,-1]输出: 0解释: 结果不能为 2, 因为 [-2,-1] 不是子数组解题思路:(1)定义历史最大变量i_max和历史最小变量i_min(2)遍历数组时计算当前最大值,不断更新:若当前值num[i] < 0时,交换i_..
原创
发布博客 2021.03.21 ·
42 阅读 ·
0 点赞 ·
0 评论

leet_16.06_两数组最小差_aibee题目

问题:给定两个整数数组a和b,计算具有最小差绝对值的一对数值(每个数组中取一个值),并返回该对数值的差解题思路先排序,然后设定返回值为最大,用双指针求得结果。代码class Solution {public: int smallestDifference(vector<int>& a, vector<int>& b) { sort(a.begin(),a.end()); sort(b.begi..
原创
发布博客 2021.03.21 ·
83 阅读 ·
0 点赞 ·
0 评论

直线经过的网格区域计算(didi)

问题描述:在一给定画布场景中,判断线段所经过网格。下图所示分别为线性递增和线性递减时,直线经过的网格路径。分析回归问题本身,直线经过网格,就必然会与网格线产生交点,因此,可考虑此种策略:①先分别遍历直线与网格横纵交点(需考虑沿X轴和Y轴递增递减性质);②根据直线与网格横纵交点求出交点位置跨越的网格序列号,且存在以下规律:1)当交点在横轴2)当交点在纵轴具体实现...
原创
发布博客 2021.03.19 ·
562 阅读 ·
1 点赞 ·
0 评论

hive中曾踩过的坑

写hql的需要的注意点:尽量使用group by 代替distinct用小表join大表join 时右侧表的关联字段要求是distinct的,否则会出现笛卡尔积现象,如a.v1列值为1,1,1,2;b.v1列值为1,1,对于a join b on a.v1=b.v1,会出现笛卡尔积:a的三个1会分别与b的两个1进行join。谨慎使用开窗函数,使用不当会造成大量的重复计算。如在统计特征:当前sku的cid3过去7天的平均每天ord的用户数量,在每个cid3有大量sku的情况下,使用开窗函数会造成大.
原创
发布博客 2021.03.05 ·
66 阅读 ·
0 点赞 ·
0 评论

hive中常用的函数

1、缘起:最近在着手做推荐特征处理工作,有大量的hql处理工作,在网上搜索相关常用函数,以备查。2、常见hive函数1、parse_url(url, partToExtract[, key])功能:解析URL字符串,partToExtract的选项包含[HOST,PATH,QUERY,REF,PROTOCOL,FILE,AUTHORITY,USERINFO]2. concat(str1,SEP,str2,SEP,str3,……) 和 concat_ws(SEP,str1,str2,str3, …
原创
发布博客 2021.01.23 ·
110 阅读 ·
0 点赞 ·
0 评论

python读取hive表数据及将生成的数据存入hive表

1、缘起:1、最近项目中部署模型时涉及到需要在线处理hive表数据,通过算法处理后,将处理生成的结果写入hive表中。通过调研可使用pyspark通过python操作hive表并处理,再生成hive表。但对于没接触pyspark的我来说,学习pypark存在时间代价。所以探索通过hdfs交互的方式对hive表进行读取和生成。2、hive表读取可通过将hive存储为csv格式通过pandas读取,注意此时千万不要将hive表存储为压缩格式,负责csv打开是乱码;hive表存储通过在hdfs上创建库表(库表
原创
发布博客 2021.01.23 ·
704 阅读 ·
0 点赞 ·
1 评论

推荐算法之潜在因子(Latent Factor)算法

缘起:在阅读Facebook论文DLRM时,涉及到了潜在因子(LF)算法,通过查询阅读有了初步了解:通过对稀疏矩阵(稀疏的原因是有未知值)R进行uv分解,得到u、v矩阵,再通过u\v中向量乘积估计R矩阵中未知值。下面转载通俗易懂的知乎帖,以备忘。原帖标题:网易云音乐的歌单推荐算法是怎样的?回答内容:这里我想给大家介绍另外一种推荐系统,这种算法叫做潜在因子(LatentFactor)算法。这种算法是在NetFlix(没错,就是用大数据捧火《纸牌屋》的那家公司)的推荐算法竞赛中获奖的算法,最早被应
转载
发布博客 2021.01.16 ·
757 阅读 ·
0 点赞 ·
0 评论

SQL中的grouping sets 子句

缘起:在分析库表数据时需求是:分析基于日期dt下某个推荐位下各实验位分别的曝光uv及基于日期dt下某个推荐位下的曝光uv。实现中使用到了grouping sets子句,这里对该子句进行总结、整理以备忘。实例解析grouping sets是group by 子句允许指定多个选项,其核心功能是增强group by 的功能。使用**grouping sets相当于多个group by 的sql查询结果再union。**下面对比说明:实例一:查询每个部门的每类工作的平均工资使用group by的
原创
发布博客 2021.01.16 ·
407 阅读 ·
0 点赞 ·
0 评论

SQL中的case when then else end用法总结

缘起:今天看hive库表分析的代码,里面涉及到了case when then else end语句,深究发现虽然其本身比较简单--基础用法:简单的条件判断,但有高级的用法--对列值进行分组处理,这里参照别人的经验进行总结下。1、基础用法写法一:SELECT s.s_id, s.s_name, s.s_sex, CASEWHEN s.s_sex = '1' THEN '男'WHEN s.s_sex = '2' THEN '女'ELSE '其他'END a
原创
发布博客 2021.01.16 ·
179 阅读 ·
0 点赞 ·
0 评论

因子分解机Factorization Machine

在看推荐领域论文时提到了FM(因子分解机),于是搜集资料梳理了一下,以下知乎文章讲的比较好并且其引文中的讲解质量也很高,贴在下面,如侵权请通知,第一时间删除。前言本文要讲解的FM(Factorization Machine)名字听起来非常硬核,但原理其实很简单。只是在普通线性模型的基础上增加了二阶(或更高阶)的特征交叉,利用矩阵分解的思想把 n∗nn*nn∗n的权重矩阵映射到 n∗kn*kn∗k 的空间内。正文1. 首先看一下普通线性模型的公式:普通的线性模型有一个明显的短板,模型本身只考虑.
转载
发布博客 2021.01.14 ·
221 阅读 ·
0 点赞 ·
0 评论

hive-sql遇到的一些坑

聚合函数count 是忽略空值NULL的,对于逻辑值或者文本数据也将被忽略,只能对数字数据进行统计(加双引号没关系)。错误示范:可以看出第二个查询中的错误:一方面count的统计本身去除了null不能这样统计,应使用if 判断给出数值进行统计,另一方面devicetoken本身为非数字,直接count也是统计不出来的。正确的方式...
原创
发布博客 2021.01.13 ·
163 阅读 ·
0 点赞 ·
0 评论
加载更多