旅行商问题 —— 状态压缩DP


如果说在给定的数据类型范围内,事件的规模已经达到了  (n!)   。即使这个时候n特别小,仍然不能够都试一遍,所以需要用DP来解决。

再就是在记忆化搜索的过程中,DP的一个下标并不是整数,但是我们可以将其编码成一个整数。对于集合可以把元素的选取与否对应到一个二进制位里面,从而把状态压缩成一个整数,大大方便了计算和维护。 针对集合的DP叫做状态压缩DP。


#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <map>
#include <sstream>
#include <queue>
#include <stack>
#define INF 0x3f3f3f3f
#define mem(a,b) memset(a,b,sizeof(a));
#define For(a,b) for(int i = a;i<b;i++)
#define LL long long
#define MAX_N 1005
/*


以下是一些位运算的操作

首先一共有n个元素
设定任意一个集合S
一个集合T

空集:                      ....... 0

只含有第i个元素的集合:     ....... 1<<i

含有全部n个元素的集合:    ........ (1 << n) - 1

判断第i个元素是否属于集合S:  ..... if( S >> i & 1 )

向集合中加入第i个元素:    ........ S | 1 << i

从集合中除去第i个元素:    ........ S & ~(1 << i)

集合S和集合T的并集:        ....... S | T

集合S和集合T的交集:        ....... S & T

*/
using namespace std;

int d[MAX_N][MAX_N];
int dp[1<<MAX_N][MAX_N];
int n;
int rec(int s,int v)
{
    if(dp[s][v] >= 0)
    {
        return dp[s][v];
    }
    if(s == (1 << n)-1 && v == 0)
    {
        return dp[s][v] = 0;
    }
    int res = INF;
    for(int u = 0; u<n; u++)
    {
        if(!(s >> u & 1 ))
        {
            res = min(res,rec(s | 1 << u,u) + d[v][u]);
        }
    }
    return dp[s][v] = res;
}
int main()
{
    scanf("%d",&n);
    for(int i = 0; i<n; i++)
        fill(d[i],d[i]+n,INF);
    for(int i = 0; i<8; i++)
    {
        int v,u,cost;
        scanf("%d%d%d",&v,&u,&cost);
        d[v][u] = cost;
    }
    for(int s = 0; s < (1 << n); s++)
        fill(dp[s],dp[s]+n,INF);
    dp[(1 << n)-1][0] = 0;
    for(int s = (1 << n)-2; s>=0; s--)
    {
        for(int v = 0; v<n; v++)
        {
            for(int u = 0; u<n; u++)
            {
                if(!(s >> u & 1))
                {
                    dp[s][v] = min(dp[s][v],dp[s | 1 << u][u] + d[v][u]);
                }
            }
        }
    }
    printf("%d\n",dp[0][0]);
    //rec();递归、记忆化搜索
    mem(dp,-1);
        printf("%d\n",rec(0,0));
    return 0;
}

/*

2017/2/8

测试样例:

0 1 3
1 2 5
2 3 5
3 4 3
4 0 7
0 3 4
2 0 4
4 1 6

*/




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值