如果说在给定的数据类型范围内,事件的规模已经达到了 (n!) 。即使这个时候n特别小,仍然不能够都试一遍,所以需要用DP来解决。
再就是在记忆化搜索的过程中,DP的一个下标并不是整数,但是我们可以将其编码成一个整数。对于集合可以把元素的选取与否对应到一个二进制位里面,从而把状态压缩成一个整数,大大方便了计算和维护。 针对集合的DP叫做状态压缩DP。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <map>
#include <sstream>
#include <queue>
#include <stack>
#define INF 0x3f3f3f3f
#define mem(a,b) memset(a,b,sizeof(a));
#define For(a,b) for(int i = a;i<b;i++)
#define LL long long
#define MAX_N 1005
/*
以下是一些位运算的操作
首先一共有n个元素
设定任意一个集合S
一个集合T
空集: ....... 0
只含有第i个元素的集合: ....... 1<<i
含有全部n个元素的集合: ........ (1 << n) - 1
判断第i个元素是否属于集合S: ..... if( S >> i & 1 )
向集合中加入第i个元素: ........ S | 1 << i
从集合中除去第i个元素: ........ S & ~(1 << i)
集合S和集合T的并集: ....... S | T
集合S和集合T的交集: ....... S & T
*/
using namespace std;
int d[MAX_N][MAX_N];
int dp[1<<MAX_N][MAX_N];
int n;
int rec(int s,int v)
{
if(dp[s][v] >= 0)
{
return dp[s][v];
}
if(s == (1 << n)-1 && v == 0)
{
return dp[s][v] = 0;
}
int res = INF;
for(int u = 0; u<n; u++)
{
if(!(s >> u & 1 ))
{
res = min(res,rec(s | 1 << u,u) + d[v][u]);
}
}
return dp[s][v] = res;
}
int main()
{
scanf("%d",&n);
for(int i = 0; i<n; i++)
fill(d[i],d[i]+n,INF);
for(int i = 0; i<8; i++)
{
int v,u,cost;
scanf("%d%d%d",&v,&u,&cost);
d[v][u] = cost;
}
for(int s = 0; s < (1 << n); s++)
fill(dp[s],dp[s]+n,INF);
dp[(1 << n)-1][0] = 0;
for(int s = (1 << n)-2; s>=0; s--)
{
for(int v = 0; v<n; v++)
{
for(int u = 0; u<n; u++)
{
if(!(s >> u & 1))
{
dp[s][v] = min(dp[s][v],dp[s | 1 << u][u] + d[v][u]);
}
}
}
}
printf("%d\n",dp[0][0]);
//rec();递归、记忆化搜索
mem(dp,-1);
printf("%d\n",rec(0,0));
return 0;
}
/*
2017/2/8
测试样例:
0 1 3
1 2 5
2 3 5
3 4 3
4 0 7
0 3 4
2 0 4
4 1 6
*/