Radix-2 分治FFT

#include <bits/stdc++.h>

using namespace std;

#define REP(i, a, b) for (register int i = (a), _end_ = (b); i <= _end_; ++i)
#define debug(...) fprintf(stderr, __VA_ARGS__)

const int dmax = 300100, oo = 0x3f3f3f3f;

const double PI = acos(-1);

int N, M, n, c[dmax];

complex<double> a[dmax], b[dmax], p[dmax];

inline int read()
{
    int x = 0, f = 1, c = getchar();
    while(c < '0' || c > '9')
    {
        if (c == '-') f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') x = x * 10 + c -'0', c = getchar();
    return x * f;
}

void FFT(complex<double> x[], int n, int type)
{
    if (n == 1) return;
    complex<double> l[n >> 1], r[n >> 1];
    for (int i = 0; i < n; i += 2)
    {
        l[i >> 1] = x[i];
        r[i >> 1] = x[i + 1];
    }
    FFT(l, n >> 1, type);
    FFT(r, n >> 1, type);
    complex<double> wn(cos(type * 2 * PI / n), sin(type * 2 * PI / n)), w(1, 0);
    for (int i = 0; i < (n >> 1); w *= wn, ++i)
    {
        x[i] = l[i] + w * r[i];
        x[i + (n >> 1)] = l[i] - w * r[i];
    }
}

int main()
{
    scanf("%d%d", &N, &M);
    REP(i, 0, N) a[i] = read();
    REP(i, 0, M) b[i] = read();
    for (int x = max(N, M) + 1, i = 1; i >> 2 < x; i <<= 1) n = i;
    FFT(a, n, 1), FFT(b, n, 1);
    REP(i, 0, n - 1) p[i] = a[i] * b[i];
    FFT(p, n, -1);
    REP(i, 0, N + M) c[i] = p[i].real() / n + 0.1;
    REP(i, 0, N + M) printf("%d%c", c[i], i == N + M ? '\n' : ' ');
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值