力扣238,除自身以外数组的乘积
题目描述
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。
题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请不要使用除法,且在 O(n) 时间复杂度内完成此题。
输入输出样例
输入: nums = [1,2,3,4]
输出: [24,12,8,6]
输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]
tips:
你可以在 O(1)
的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组不被视为额外空间。)
解法一:暴力解法
vector<int>productExceptSelf(vector<int>&nums)
{
//判断数组中的值是否存在
if(nums.empty())
{
return nums;
}
vector<int>res;
int length=nums.size();
for(int i=0;i<length;i++)
{
int tempRes=1;
for(int j=0;j<i;j++)
{
tempRes*=nums[j];
}
for(int k=i+1;k<length;k++)
{
tempRes*=nums[k];
}
res.push_back(tempRes);
}
return res;
}
解法二:左右乘积列表
//解法二:左右乘积列表、
//设定两个存储列表,前缀之积,后缀之积
//时间复杂度O(n) 空间复杂度O(n)
vector<int>productExceptSelf2(vector<int>&nums)
{
if(nums.empty())
{
return nums;
}
int length=nums.size();
//设定前缀数组和后缀数组
vector<int>prefix(length,1);
vector<int>suffix(length,1);
//前缀和后缀进行赋值
for(int i=1;i<length;i++)
{
prefix[i]=prefix[i-1]*nums[i-1];
}
for(int i=length-2;i>=0;i--)
{
suffix[i]=suffix[i+1]*nums[i+1];
}
vector<int>res(length);
for(int i=0;i<length;i++)
{
res[i]=prefix[i]*suffix[i];
}
return res;
}
解法三,改进算法二,实现O(1)空间复杂度
//改进算法二,实现O(1)的空间复杂度
vector<int>productExceptSelf3(vector<int>&nums)
{
if(nums.empty())
{
return nums;
}
int length=nums.size();
vector<int>res(length,1);
for(int i=1;i<length;i++)
{
res[i]=res[i-1]*nums[i-1];
}
int suffix=1;
for(int i=length-2;i>=0;i--)
{
suffix*=nums[i+1];
res[i]=res[i]*suffix;
}
return res;
}
解法四,使用动态规划的思想
//继续改进,在一个for循环中完成
vector<int>productExceptSelf4(vector<int>&nums)
{
if(nums.empty())
{
return nums;
}
int length=nums.size();
int left=1,right=1;
vector<int>res(length,1);
for(int i=1;i<length;i++)
{
left=left*nums[i-1];
right=right*nums[length-i];
res[i]*=left;
res[length-1-i]*=right;
}
return res;
}