力扣416题:分割等和子集

本文介绍了如何使用动态规划解决LeetCode 416题——分割等和子集。通过检查数组元素总和是否为偶数,确定是否可能分割,并通过动态规划数组dp来存储子集和的状态,优化空间复杂度,最终得出是否能将数组分割成两个和相等的子集。
摘要由CSDN通过智能技术生成

力扣416题:分割等和子集

题目描述

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

输入输出样例

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。
  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

解法:动态规划

bool canPartition(vector<int>&nums)
    {   
        //对数组的初始情况进行判断
        if(nums.empty())
        {
            return false;
        }

        int length=nums.size();
        int sum=0;

        //计算数组中所有的元素的总和,若总和为奇数就代表该数组无法被分割成两个等和子集
        for(int num:nums)
        {
            sum+=num;
        }

        if(sum%2==1)
        {
            return false;
        }

        //因此设置目标值为sum/2,因为只要数组的一部分子集满住总和的一半,另一部分自然而然也能满足
        int target=sum/2;

        //创建动态规划数组,行,代表数组内元素的索引,列,代表目标值
        vector<vector<bool>>dp(length,vector<bool>(target+1));

        //对动态规划数组进行初始化
        //先填表格中的第0行,因为第一个数只能让容积为他的背包恰好被装满
        if(nums[0]<=target)
        {
            dp[0][nums[0]]=true;
        }

        //建立动态规划的状态转移方程
        for(int i=1;i<length;i++)
        {
            for(int j=0;j<=target;j++)
            {
                // 由题意分析出来,状态转移方程为
                //dp[i][j]=dp[i-1][j] or dp[i-1][j-nums[i]] 其中如果nums[i]=j,直接便可返回true

                dp[i][j]=dp[i-1][j];

                if(nums[i]==j)
                {
                    dp[i][j]=true;
                    continue;
                } 
                if(nums[i]<j)
                {
                    dp[i][j]=dp[i-1][j]||dp[i-1][j-nums[i]];
                }
            }
        }
        return dp[length-1][target];
    }

动态规划:优化状态转移方程

 //修改动态转移方程
        bool canPartition2(vector<int>&nums)
    {   
        //对数组的初始情况进行判断
        if(nums.empty())
        {
            return false;
        }

        int length=nums.size();
        int sum=0;

        //计算数组中所有的元素的总和,若总和为奇数就代表该数组无法被分割成两个等和子集
        for(int num:nums)
        {
            sum+=num;
        }

        if(sum%2==1)
        {
            return false;
        }

        //因此设置目标值为sum/2,因为只要数组的一部分子集满住总和的一半,另一部分自然而然也能满足
        int target=sum/2;

        //创建动态规划数组,行,代表数组内元素的索引,列,代表目标值
        vector<vector<bool>>dp(length,vector<bool>(target+1));

        //对动态规划数组进行初始化
        //初始化dp[0][0]=true;

        dp[0][0]=true;


        //先填表格中的第0行,因为第一个数只能让容积为他的背包恰好被装满
        if(nums[0]<=target)
        {
            dp[0][nums[0]]=true;
        }

        //建立动态规划的状态转移方程
        for(int i=1;i<length;i++)
        {
            for(int j=0;j<=target;j++)
            {
                // 由题意分析出来,状态转移方程为
                //dp[i][j]=dp[i-1][j] or dp[i-1][j-nums[i]] 其中如果nums[i]=j,直接便可返回true

                dp[i][j]=dp[i-1][j];


                if(nums[i]<=j)
                {
                    dp[i][j]=dp[i-1][j]||dp[i-1][j-nums[i]];
                }
            }
        }
        return dp[length-1][target];
    }

动态规划,优化空间

 //  优化空间
    //将状态数组从二维优化成一维    //修改动态转移方程
    //从后往前遍历进行实现
    bool canPartition3(vector<int>&nums)
    {   
        //对数组的初始情况进行判断
        if(nums.empty())
        {
            return false;
        }

        int length=nums.size();
        int sum=0;

        //计算数组中所有的元素的总和,若总和为奇数就代表该数组无法被分割成两个等和子集
        for(int num:nums)
        {
            sum+=num;
        }

        if(sum%2==1)
        {
            return false;
        }

        //因此设置目标值为sum/2,因为只要数组的一部分子集满住总和的一半,另一部分自然而然也能满足
        int target=sum/2;

        //创建动态规划数组,行,代表目标值

        vector<bool>dp(target+1);

        //对动态规划数组进行初始化
        //初始化dp[0][0]=true;

        dp[0]=true;


        //先填表格中的第0行,因为第一个数只能让容积为他的背包恰好被装满
        if(nums[0]<=target)
        {
            dp[nums[0]]=true;
        }

        //建立动态规划的状态转移方程
        for(int i=1;i<length;i++)
        {
            for(int j=target;nums[i]<=j;j--)
            {
                // 由题意分析出来,状态转移方程为
                //dp[i][j]=dp[i-1][j] or dp[i-1][j-nums[i]] 其中如果nums[i]=j,直接便可返回true

                if(dp[target])
                {
                    return true;
                }
                dp[j]=(dp[j]||dp[j-nums[i]]);
            }
        }
        return dp[target];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值