CNN到底在图像处理方面的优势有哪些?

      首先,基于图像的识别,分类等操作,具有无接触、高精度的特点,尤其在活体检测、识别、分类等过程中这种无接触的方式适用性极强。

      然而到目前为止,在图像识别领域的每一个重大的突破无一不都是用到了卷积神经网络。卷积神经网络CNN以及众多以此衍生出来的网络模型,可以直接将图像数据作为输入,不仅无需人工对图像进行预处理和额外的特征抽取等复杂操作,而且以其特有的细粒度特征提取方式,使得对图像的处理达到了几近人力的水平。这可能也是CNN为何这么火的原因吧。

      无法预知以后会不会有新的网络模型可以取而代之。

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

君子珩

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值